Resource Access Control in RT Systems

• System Model:
 - Processors(s)
 - m Types of Serially Reusable Resources R1, ..., Rm
 - An execution of a Job Ji requires:
 - A processor for Ji units of time.
 - Some resources for exclusive use.

• Resources:
 - Serially Reusable: Allocated to one job at a time. Once allocated, held by the job until no longer needed.
 - Examples: Semaphores, locks, servers,
 - Operations:
 - Lock (Ri)
 - Unlock (Ri)
 - Critical section
 - Resources allocated non-preemptively
 - Critical sections properly nested.
Preemption of tasks in their critical sections can cause priority inversion.

Example:

```
    T1
    T2
    T3

    lock(s) -> S is locked
    unlock(s)
```

- **Negative effect on schedulability and predictability.**
- **Traditional resource management algorithms fail** (e.g., Banker's algorithm). Decouple resource management decisions from scheduling decisions.
Predictability: Scheduling Anomalies

Example:

\[T_1 = (2, 5, 8) \quad T_2 = (4, 7, 22) \quad T_3 = (4, 6, 26) \]

- Missed deadline
- Reduced length of critical section
Al Nok: Disallow Processor Preemption

of Tasks in Critical Section

Define: β = Maximum duration of all critical sections.

Analysis identical to analysis with non-prompted
else portions, i.e.

Task T_i: schedulable, if

$$\sum_{k=1}^{i} \frac{c_k}{p_k} + \frac{\beta}{p_i} \leq u_x(i)$$

↑ Scheduling Algorithm.

Problem: Critical sections can be rather long.
Priority inheritance can control priority inversion

\[\pi_1 > \pi_2 > \pi_3 \]

Without priority inheritance

With priority inheritance
Terminology:

- A job is **directly blocked** when it requests a resource R_i, i.e. executes `lock(R_i)`, but no resource of type R_i is available.

- The scheduler grants the lock request, i.e. allocates the requested resource, to the job, according to the resource allocation rules, as soon as the resources become available.

- J' **directly blocks** J if J' holds some resources when J was requested.

Priority Inheritance:

- **Basic strategy for controlling priority inversion:**

 Let π be the priority of J

 and π' be the priority of J'

 and $\pi' < \pi$

 then the priority of J' to π whenever J' to π whenever J'

- New forms of blocking may be introduced by the resource management policy to control priority inversion and/or prevent deadlock.
BASIC PRIORITY-INHERITANCE PROTOCOL

- Jobs that are not blocked are scheduled according to a priority-driven algorithm preemptively on a processor.

Priorities of tasks are fixed, except for the conditions described below.

A job J requests a resource by executing lock(R)

- If R is available, it is allocated to J, continues executing and releases R by doing unlock(R).

- If R is allocated to J', J' directly blocks J. The request for R is denied.

However: Let t = priority of J when executing lock(R).

\[t' = \text{priority of } J' \text{ at the same time.} \]

For as long as J' holds R, its priority is max(t, t') and returns to t' when it releases R.

That is: J' inherits the priority of J when J' directly blocks J and J has a higher priority.

- Priority inheritance is transitive.
Example: Priority Inheritance Protocol

\[P_1 > P_2 > P_3 > P_4 > P_5 \]

Task uses B.

Task uses A.

Task uses A and B.

Problem: If \(T_5 \) tries to lock (B) while it has priority \(P_3 \), we have deadlock!
Properties of Priority Inheritance Protocol

- It does not prevent deadlock.

- A task can be blocked directly by a task with a lower priority at most once, for the duration of the (outmost) critical section.

- Consider a task whose priority is higher than in other tasks

A worst case:

Each of the lower-priority tasks can directly block the task at root once.

A task outside its critical section cannot directly block a higher-priority task.
Priority Ceiling Protocol

- **Assumptions:**
 - Priorities of tasks are fixed.
 - Resources required by tasks are known.

- **Therefore:**
 - Priority ceiling of R.
 - We know $T_T = \text{highest priority of all tasks that will require } R$.

- Any task holding R will have priority T_R; either its priority is T_T, or it inherits T_T.

- **Motivation:**
 - Suppose there are resources A and B.
 - Both A and B are available. T_1 requests A.
 - T_2 requests B after A is allocated.

 - If $T_2 > T_T$, T_2 can never preempt T_1.
 - B should be allocated to T_2.
 - If $T_2 = T_T$, T_2 can preempt T_1 (and also request B). B should not be allocated to T_2 to avoid deadlock.
Priority Ceiling Protocol

- Same as the basic Priority Inheritance Protocol except for the following:
 - When a task \(T \) requests for allocation of a resource \(R \) by executing \texttt{lock}(\(R \)),
 - The request is denied if
 1. \(R \) is already allocated to \(T \) (\(T' \) directly blocks \(T \))
 2. The priority of \(T \) is not higher than all priority ceilings of resources allocated to tasks other than \(T \) at the time \(t \) (these tasks block \(T \)).
 - Otherwise, \(R \) is allocated to \(T \).
 - When a task blocks other tasks, it inherits the highest of their priorities.
EXAMPLE: (FROM LEMOINEY ET AL.
IEEE TC, Sept 1990)

\[\pi_1 > \pi_2 > \pi_3 \]

\(\pi_X = \pi_2, \quad \pi_Y = \pi_2 = \pi_Z \)

(\(\pi_1 \) LOCK (Z) is denied, since \(\pi_2 = \pi_Y \))
EXAMPLE: PRIORITY CEILING PROTOCOL

(a) FAULT: DIRECTLY BLOCKED BY T_5.

(b) FAULT: $P_4 < P_9$

(1) T_5 Blocks T_4 (to prevent deadlock.)

(2) T_5 Blocks T_3 (to control priority inversion.)

$P_1 > P_2 > P_3 > P_4 > P_5$

$P_9 = P_2$, $P_8 = P_1$

\[U(B) \] \[U(C) \]

\[U(A) \]

\[U(A) \]

\[U(B) \]

\[U(A) \]

\[U(A) \]

\[U(A) \]
Reminders:

- **Blocking**: A higher-priority task waits for a lower-priority task.

- A task \(T_H \) can be blocked by a lower-priority task \(T_L \) in three ways:
 1. **Directly**, i.e.,

 \[
 T_H \xrightarrow{\text{Request for}} X \xrightarrow{\text{Allocated to}} T_L
 \]
 2. When \(T_L \) inherits a priority higher than the priority \(P_H \) of \(T_H \):

 \[
 T_H \xrightarrow{P_H} X \xrightarrow{\text{Allocated to}} T_L
 \quad \text{\((P > P_H)\)}
 \]
 3. When \(T_H \) requests for a resource, the priority ceiling(s) of resource(s) held by \(T_L \) is equal to or higher than \(P_H \):

 \[
 T_H \xrightarrow{\text{Request for}} Y \xrightarrow{P_H \leq P_K} X \xrightarrow{\text{Allocated to}} T_L
 \]
Consider: task T with priority p_T and release time t.

Observation 1:

T cannot be blocked if at t, every resource allocated has a priority ceiling less than p_T.

Obvious:

- No task with priority lower than p_T holds any resource with priority ceiling $\geq p_T$.

- T will not require any of the resources allocated at time t with priority ceilings $\leq p_T$, and will not be directly blocked waiting for them.

- No lower-priority task can inherit a priority higher than p_T through resources allocated at t.

- Requests for resources by T will not be denied because of resource allocations made before t.
Observation 2:

Suppose that:
- There is a task T_L holding a resource X.
- T preempts T_L, and then
- T is allocated a resource Y.

Until T completes, T_L cannot inherit a priority higher or equal to T.

Reason: ($P_L = \text{priority of } T_L \text{ when it is preempted}$)

- $P_L < P$

- T is allocated a resource Y

 \Rightarrow Y is higher than all the priority ceilings of resources held by all lower-priority tasks when T preempts T_L.

- T cannot be blocked by T_L, from Observation 1.

 \Rightarrow P_L cannot be raised to P or higher through inheritance.
Schedulability analysis with resource access.

Schedulability loss due to blocking:

Reminder: critical sections are properly nested

Duration of a critical section is duration of the outmost critical section

Observation 1:

A low-priority task T_L can block a higher-priority task T_H at most once!

Reason: when T_L is not in critical sections

- $p_L < p_H$
- T_L cannot inherit a higher priority
Observation 2:

A task T can be blocked for at most the duration of one critical section, no matter how many tasks share resources with T.

Reason:

- It is not possible for T to be blocked for durations of 2 critical sections of one task.
- It is not possible for T to be blocked by T_1 and T_2 with priorities $p_1 < p$, $p_2 < p$.

\[\text{T} \]
\[\text{U(A)} \quad \text{U(B)} \quad \text{U(A)} \quad \ldots \]

\[\text{T_1} \]
\[\text{U(A)} \quad \text{U(B)} \quad \ldots \]

\[\text{T_2} \]
\[\text{U(A)} \quad \text{U(B)} \quad \text{U(A)} \quad \ldots \]

↑ NOT POSSIBLE!

T_2 is allocated $B \Rightarrow T_2$ is higher than the priority ceiling of A, which is $\geq p$.

↑ NOT POSSIBLE!

T_1 is allocated $B \Rightarrow T_1$ is not allocated to T_2 ($p_1 < p$) AC?

$T_1 \geq p = B$ is not allocated to T_2 ($p_1 < p$) AC!
Observation 3:

The priority ceiling protocol prevents transitive blocking.

The blocking graph cannot contain a subgraph of the form:

$$
\begin{align*}
T_1 & \rightarrow T_2 \\
(\text{blocked by}) & \rightarrow T_3
\end{align*}
$$

Reason:

If such a subgraph were to exist, we must have:

- Tasks’ assigned priorities must satisfy
 $$
 \pi_1 > \pi_2 > \pi_3
 $$

- Two or more resources are involved; the TWF-graph must contain the following subgraph, for two resources X and Y.

$$
\begin{align*}
X & \rightarrow T_2 \\
0 & \rightarrow Y \rightarrow T_3
\end{align*}
$$

> It must be that T_3 is allocated Y, then T_2 is allocated X.

> From Observation 2: “Until T_2 completes, it is not possible for T_3 to inherit a priority higher than π_3.”

- According to the above subgraph, T_3 inherits
 $$
 \pi_3 > \pi_2
 $$

\Rightarrow Contradiction!
Observation 4:
Priority ceiling protocol prevents deadlocks.

- Transitive blocking is not possible.
- Therefore, it suffices to show that the blocking graph (or the twin graph) cannot contain cycles of length 2.
 i.e. Subgraphs of the form

\[
\begin{align*}
x \rightarrow y \\
y \rightarrow x
\end{align*}
\]

or

\[
\begin{align*}
x \rightarrow y \\
y \rightarrow x
\end{align*}
\]
Who blocks whom? For how long?

Consider the following resource graph:

- $T_1 = (3, 2, 0.8)$
- $T_2 = (3, 2.1, 0.4)$
- $T_3 = (0, 6, 0.2)$
- $T_4 = (0, 10, 1)$

$T_1 > T_2 > T_3 > T_4$

<table>
<thead>
<tr>
<th>Directly blocked by</th>
<th>Blocked time P.I. by</th>
<th>Blocked due to P.I.</th>
<th>Max. blocking time</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>T_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T_2 misses deadline at time 2.1 + 3.
Exercise:

\[T_2 = \{8, 4, [A, 2]\} \]
\[T_2 \text{ has nested CSS,} \]
\[\quad \text{nine once for 2 units,} \]
\[\quad \text{nine once for 4 units.} \]

\[T_2 = T_3 = \{C, 3\} \]
\[T_5 = [D, 4, 2, [A, 2], [C, 2.5]] \]
\[T_4 = [D, 3, [E, 2]] \]

Direct Blocking By

<table>
<thead>
<tr>
<th></th>
<th>(T_2)</th>
<th>(T_3)</th>
<th>(T_4)</th>
<th>(T_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_1)</td>
<td>(T_2)</td>
<td>(T_3)</td>
<td>(T_4)</td>
<td>(T_5)</td>
</tr>
<tr>
<td>(T_2)</td>
<td>(T_3)</td>
<td>(T_4)</td>
<td>(T_5)</td>
<td></td>
</tr>
<tr>
<td>(T_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blocking due to P.I. By

<table>
<thead>
<tr>
<th></th>
<th>(T_2)</th>
<th>(T_3)</th>
<th>(T_4)</th>
<th>(T_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blocking due to P.C. By

<table>
<thead>
<tr>
<th></th>
<th>(T_2)</th>
<th>(T_3)</th>
<th>(T_4)</th>
<th>(T_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Priority Ceiling of:

\[A = \]
\[B = \]
\[C = \]
\[D = \]
Worst-case schedulable utilization

A set of n periodic tasks is schedulable by the rate-monotonic algorithm together with the priority-conflicting protocol if

\[
\frac{e_1}{p_1} + \frac{e_2}{p_2} \leq 1
\]

\[
\frac{e_1}{p_1} + \frac{e_2}{p_2} + \frac{e_3}{p_3} \leq 2(\sqrt{2} - 1)
\]

\[
\vdots
\]

\[
\frac{e_1}{p_1} + \frac{e_2}{p_2} + \ldots + \frac{e_i}{p_i} + \frac{b_i}{p_i} \leq i(2^{\frac{1}{2i}} - 1)
\]

\[
\vdots
\]

\[
\frac{e_1}{p_1} + \frac{e_2}{p_2} + \ldots + \frac{e_n}{p_n} \leq n(2^{\frac{1}{2n}} - 1)
\]

- b_i = max. execution time of $T_i = (p_i, e_i)$

- Beliave: the form of this sufficient condition does not give us a complete picture of the worst-case performance.

- Example: maximum number of context switches for request is 4.
EXAMPLE:

\[T_1 = (3, 2, 0.8) \text{ and } [R, 0.8] \]
\[T_2 = (3, 2.05, 0.8) \]
\[T_3 = (0, 10, 2) \text{ and } [R, 2] \]

- \(B_2 = 1.0 \)
 \[C_0 \frac{c_1}{p_1} + \frac{c_2}{p_2} = \frac{0.8 + 1}{2} < 1 \]
 \[\Rightarrow T_1 \text{ is schedulable.} \]

- \(T_2 \) cannot accept \(T_3 \) in \((0, 2)\) because the priority of \(T_3 \) is \(p_2 \).

\[B_2 = 1 \implies \frac{c_1}{p_1} + \frac{c_2}{p_2} + \frac{c_3}{p_3} = \frac{0.8 + 1}{2} + \frac{0.2 + 1}{2.05} > 1 \]
 \[\Rightarrow T_2 \text{ is not schedulable, perhaps.} \]
 \[\text{(In this case, indeed it is not.)} \]

- \(\frac{c_1}{p_1} + \frac{c_2}{p_2} + \frac{c_3}{p_3} = 0.75 < 3(2.5 - 1) \Rightarrow T_3 \text{ is schedulable.} \)
EXAMPLE:

\[T_1 = (10, 2) \quad B_1 = 3 \]
\[T_2 = (15, 4) \quad B_2 = 1 \]
\[T_3 = (25, 3) \quad B_3 = 4 \]
\[T_4 = (30, 4.5) \]

\[
\frac{e_1}{p_1} + \frac{B_1}{p_1} = \frac{2}{10} + \frac{3}{10} = 0.5 < 1
\]

\[
\frac{e_1}{p_1} \quad \frac{e_2}{p_2} \quad \frac{B_2}{p_2} = \frac{2}{10} + \frac{4}{15} + \frac{3}{15} = 0.533 < 0.832
\]

\[
\frac{e_1}{p_1} \quad \frac{e_2}{p_2} \quad \frac{e_3}{p_2} \quad \frac{B_3}{p_2} = \frac{2}{10} + \frac{3}{15} + \frac{4}{25} = 0.75 < 0.832
\]

\[
\frac{e_1}{p_1} \quad \frac{e_2}{p_2} \quad \frac{e_2}{p_2} \quad \frac{e_4}{p_2} = \frac{2}{10} + \frac{4}{15} + \frac{3}{25} + \frac{4.5}{30} = 0.74 < 0.832
\]

REMARK:

A set of tasks that fails this test may nevertheless be schedulable.

Test is very conservative!
\[T_1 = (5, 1.5), \; B_1 = 14 \]
\[T_2 = (6, 2), \; B_2 = 24 \]
\[T_3 = (7, 3), \; B_3 = 0.5 \]
\[T_4 = (11, 4) \]
THE MATH:

(1) $1 + 1 < 3.8$ T_1 SCEDULABLE

(2) $2 + 1.5 + 1.4 > 3.8$ T_2 SCEDULABLE

(3) $2 + 1.5 + 1 + 0.5 = 6$ T_3 SCEDULABLE

(4) $2 	imes 1 + 2 	imes 1.5 + 1 + 1.4 < 12$ T_4 SCEDULABLE