Overview

- Bayes rule: Significance
- Diagnostic vs. causal knowledge
- Calculating $P(T)$ given $P(T|D)$ and $P(D)$
- Ratios of conditional probabilities and causes of an phenomenon
- Example: object recognition
- Bayesian updating

Significance of Bayes’ Rule

- $P(T|D)$ may be easier to obtain: you can run the test on a small pool of known patients (say 100) at a hospital.

- $P(D|T)$ is much harder to obtain directly. Since the test makes 1 mistake out of 100 tests, if you run the test on 10,000 people, you’ll get 100 false-positives, and one genuine patient who tests positive (consider that $P(T) = 0.010098$). So, just to get about 100 people testing positive, you have to run the tests on 10,000 people.

- $P(D)$ serves as a prior in this case. In many cases, the prior represents subjective belief of the person calculating the probability in case $P(D)$ is not directly measurable.

Bayes’ Rule: Example Revisited

These are given:
\[
\begin{align*}
P(T|D) &= 0.99 \\
P(\neg T|\neg D) &= 0.99 \\
P(D) &= \frac{1}{10,000} = 0.0001
\end{align*}
\]

We want to calculate the probability that you have the disease given a positive test result:

\[
P(D|T) = \frac{P(T|D)P(D)}{P(T)}
\]

Diagnostic vs. Causal Knowledge

Consider these probabilities:
- $P(\text{Symptom}|\text{Disease})$: causal knowledge
 - relatively fixed.
- $P(\text{Disease})$: somewhat variable.
- $P(\text{Disease}|\text{Symptom})$: diagnostic knowledge
 - fluctuates as $P(\text{Disease})$ change.

$P(\text{Disease}|\text{Symptom})$ directly measured can be no longer accurate when $P(\text{Disease})$ changes (e.g. an epidemic outburst), however the calculation based on Bayes’ rule can be much more robust.
Calculating \(P(T) \) given \(P(T|D) \) and \(P(D) \)

\[
P(T) = P(T \cap D) + P(T \cap \neg D)
= P(T|D)P(D) + P(T|\neg D)P(\neg D)
\]

- \(\{D\} \cup \{\neg D\} \) completely account for the whole population, but
- \(\{T\} \cup \{\neg T\} \) does not cover the whole population (because you did not test everyone!).

Calculating \(P(T) \) given \(P(T|D) \) and \(P(D) \)

Another way of deriving
\[
P(T) = P(T|D)P(D) + P(T|\neg D)P(\neg D):
\]
From
\[
P(D|T) = \frac{P(T|D)P(D)}{P(T)}
\]
\[
P(\neg D|T) = \frac{P(T|\neg D)P(\neg D)}{P(T)}
\]
and from \(P(D|T) + P(\neg D|T) = 1 \),
\[
1 = \frac{P(T|D)P(D)}{P(T)} + \frac{P(T|\neg D)P(\neg D)}{P(T)}, \text{ thus }
\]
\[
P(T) = P(T|D)P(D) + P(T|\neg D)P(\neg D)
\]

Comparison of Conditional Probabilities

When \(C_1 \) or \(C_2 \) can cause phenomenon (or effect) \(E \), to find out the which is the more probable cause of phenomenon \(E \), we do not need to explicitly calculate \(P(E) \):

- \(P(C_1|E) = \frac{P(E|C_1)P(C_1)}{P(E)} \)
- \(P(C_2|E) = \frac{P(E|C_2)P(C_2)}{P(E)} \)
- From the above, we get:
\[
\frac{P(C_1|E)}{P(C_2|E)} = \frac{P(E|C_1)P(C_1)}{P(E|C_2)P(C_2)} = \frac{a}{b}
\]
Example: The Problem of Object Recognition

Given an image projected on the retina, what is the more likely cause?
the 2D hexagon? or a transparent 3D cube? This is basically a computer vision problem.

\[
\frac{P(\text{Hexagon}|\text{Image})}{P(\text{Cube}|\text{Image})} = \frac{P(\text{Image}|\text{Hexagon})P(\text{Hexagon})}{P(\text{Image}|\text{Cube})P(\text{Cube})} = \frac{a}{b}
\]

A probabilistic vision agent can make a decision based on such a ratio.

Example: Object Recognition (cont’d)

\[
\frac{P(\text{Hexagon}|\text{Image})}{P(\text{Cube}|\text{Image})} = \frac{P(\text{Image}|\text{Hexagon})P(\text{Hexagon})}{P(\text{Image}|\text{Cube})P(\text{Cube})} = \frac{a}{b}
\]

- Decision: if \(\frac{a}{b} > 1 \), it is most likely that a hexagon generated the image. If \(\frac{a}{b} < 1 \), it is most likely that a cube generated the image.

Example: Object Recognition (cont’d)

Suppose we have these conditional probabilities \(P(\text{Cavity}|\text{Toothache}) \) and \(P(\text{Cavity}|\text{Catch}) \). What if we want to know \(P(\text{Cavity}|\text{Toothache} \land \text{Catch}) \)? These are the alternatives:

- Look up the joint probability table: not practical or even impossible in most cases
- We can calculate

\[
P(\text{Cav}|\text{Ache} \land \text{Catch}) = \frac{P(\text{Ache} \land \text{Catch}|\text{Cav})P(\text{Cav})}{P(\text{Ache} \land \text{Catch})}
\]

but, calculating the new conditional prob and the normalization factor is a pain.
Bayesian Updating

An Alternative: gradually work in the multiple evidences – Bayesian Updating

- Reformulate the Bayes' rule so that conditional probability of events given combined evidences (such as $P(A|B \land C)$) are not necessary.

- Use domain knowledge to replace the more complex conditional probabilities with known, simpler ones (utilize conditional independence).

Bayesian updating makes combining evidences efficient (more detail next time).

Key Points

- Why and when is Bayesian analysis useful?
- How to calculate priors from conditional distributions?
- How is subjective belief utilized in Bayesian analysis?

A Brief Summary

Topics covered so far:

- Search
- Logical inference
- Probabilistic inference

Topics to be covered:

- Learning
- Special topics

Next Time

- Conditional independence and efficient probabilistic inference.
- Probabilistic reasoning: chapter 15