Overview

- Knowledge representation
- Knowledge bases
- Logic and Frames
- Propositional Logic
- Inference rules
- Normal forms

Tips for Project 1 (I)

```lisp
(defun General-Search (problem, Que-Fn)
  (node-list := initial-state
  loop begin
    if Empty(node-list) then return FAIL
    node := Get-First-Node(node-list)
    if (node == goal) then return node as SOLUTION
    node-list := Que-Fn(node-list, Expand(node))
  loop end

  Utilize the pseudo code in the text book)
```

Tips for Project 1 (II)

'((1 3 4 8 6 2 7 0 5); blank is stored as 0
h ; heuristic function value
depth ; depth from the root
path)) ; list of moves from the start

Sorting a node list, e.g. according to the heuristic:

```lisp
(defun sort-node-list (node-list)
  (sort node-list #'(lambda (x y) (< (second x) (second y)) )))
```

Sorting: Alternatives

```lisp
(defun sort-node-list (node-list)
  (sort node-list
    (function (lambda (x y) (< (second x) (second y)) ))))

; the above is equivalent to :
(defun sort-node-list (node-list)
  (sort node-list
    (lambda (x y) (< (second x) (second y)) ))))

; the above is equivalent to :
(defun compare-h (x y)
  (< (second x) (second y)))

(defun sort-node-list (node-list
  (sort node-list #'compare-h)))
```
Lambda Expression

Lambda expression can basically replace any occurrences of function names, i.e. it works like an anonymous function:

```
(defun mysqr (x) (* x x))
(mysqr '11)
```

; the above is the same as
```
((lambda (x) (* x x)) '11)
```

; some more examples
```
(defun myop (x op)
  (eval (list op (first x) (second x))))

(myop '(2 3) '*)

(myop '(2 3) '(lambda (x y) (* x y)))
```

Knowledge Representation

There are basically two classes of representations in traditional AI:

- **Logic**: methods based on first-order predicate calculus
 (mathematical logic)

- **Frames**: methods based on networks of nodes representing objects or concepts, and labeled arcs representing relations among nodes

These two are competitive, but complementary.

Sorting: Example

```
(setq test-node-list
  '((list1 10 0 0) (list2 87 0 0) (list 100 0 0) (list 5 1 0 0))
)

(defun sort-node-list (node-list)
  (sort node-list
    #'(lambda (x y) (< (second x) (second y)) )
  )
)

(sort-node-list test-node-list)
```

* You can use any combination of values to sort, and do ascending or descending sorts by changing the lambda function.

Representation Hypothesis

A central tenet in AI is the **representation hypothesis**, which states that intelligent behavior is based on

- **representation** of input and output data as symbols

- **reasoning** by processing symbol structures, resulting in new symbol structures

The problem then is what the representations and reasoning process should be.
Strengths and Weaknesses of Logic and Frames

Logic (predicate calculus)

- Strengths: (1) logical power, (2) rigorous mathematical foundation
- Weaknesses: (1) slow (search) (2) rigidity (T/F)

Frames

- Strengths: (1) supports defaults (data is seldom complete), (2) procedural attachment(*)
- Weaknesses: weak logical power

(*) Procedural attachment: pullers (if needed), pusher (if added), if referenced, if deleted, if changed, etc.

Alternatives to the Representation Hypothesis

There are several alternatives:

- analog information: continuous values
- special-purpose hardware: domain specific functions such as vision
- neural networks: subsymbolic approaches
- holographic memories
- etc.

Knowledge Base Systems

- Domain-independent algorithms: Inference engine
- Domain-specific content: Knowledge base

- KB: set of sentences in a formal language
- KB is declarative: tell what we want, not how we want it done (i.e. procedural)

KB Constructs

- Knowledge base: how to represent knowledge with sentences or formulas → various forms of logic
- Inference engine: how to generate new sentences or formulas given old ones in the KB → various forms of inference procedures
Logic: Language for KBs

Logic is the representational language for KBs:

- **Logic consists of syntax** (sentence structure) and **semantics** (how sentences relate to the real world; T/F values)
- **Interpretation**: fact to which a sentence refers (T/F assignment)
- **Inference**: deriving new sentences from old ones

Inference procedure

- **Sound**: no false sentences can be derived from the KB using the inference procedure
- **Complete**: inference procedure can derive **all** true conclusions from a set of premises

Well-Formed Formulas in Propositional Logic

Components of well-formed formulas (sentences):

- **Propositional symbols (atoms)**: \(P, Q, R \)
- **Parentheses**: ()
- **Connectives**: \(\neg, \land, \lor, \rightarrow, \leftrightarrow \)
- **Constants**: \(T, F \)

Types of Logic

Ontological: what exists in the world?
Epistemological: what can we know?

<table>
<thead>
<tr>
<th>Language</th>
<th>Ontological</th>
<th>Epistemological</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositional</td>
<td>facts</td>
<td>T/F/?</td>
</tr>
<tr>
<td>First-order Logic</td>
<td>facts, objects, relations</td>
<td>T/F/?</td>
</tr>
<tr>
<td>Temporal Logic</td>
<td>facts, objects, relations, times</td>
<td>T/F/?</td>
</tr>
<tr>
<td>Probability Theory</td>
<td>facts</td>
<td>degree of belief 0..1</td>
</tr>
<tr>
<td>Probability Theory</td>
<td>facts</td>
<td>degree of belief 0..1</td>
</tr>
<tr>
<td>Fuzzy Logic</td>
<td>degree of truth</td>
<td>degree of belief 0..1</td>
</tr>
</tbody>
</table>

* first-order logic == predicate calculus

Let's begin with propositional logic.

Well-Formed Formulas (Cont'd)

Well-Formed Formulas (wff): Syntax

\[
\begin{align*}
\text{wff} & \Rightarrow \ \text{atom|constant} \\
\text{wff} & \Rightarrow \ (\neg \text{wff}) \\
\text{wff} & \Rightarrow \ (\text{wff} \lor \text{wff}) \\
& \mid (\text{wff} \land \text{wff}) \\
& \mid (\text{wff} \rightarrow \text{wff}) \\
& \mid (\text{wff} \leftrightarrow \text{wff})
\end{align*}
\]

Operator precedence: \(\neg, \land, \lor, \rightarrow, \leftrightarrow \) (decreasing order)
Propositional Logic: Semantics

- atoms can take on T of F values.
- an interpretation assigns specific truth values to the atoms.
- for a formula with n atoms, there are 2^n possible truth assignments.
- a formula is true under an interpretation iff the formula evaluates to T with the assignment of truth values within the interpretation.
- a formula is valid iff it is T under all interpretations.
- a formula is inconsistent (unsatisfiable) iff it is F under all interpretations.
- a formula G is valid if $\neg G$ is inconsistent

Propositional Logic: Semantics (cont’d)

- if a formula F is T under an interpretation I, then we say I satisfies F. We also say I is a model for F
- if formula F is F under interpretation I, then we say I falsifies F
- two formulas F and G are equivalent iff F and G have the same truth values under every interpretation I:
 \[F \leftrightarrow G \]
- there can be many models (at least one) of a formula F if F is satisfiable.

Basic Laws of Propositional Logic

- $F \lor G = G \lor F$, $F \land G = G \land F$ (commutative)
- $(F \lor G) \lor H = F \lor (G \lor H)$, $(F \land G) \land H = F \land (G \land H)$ (associative)
- $F \lor (G \land H) = (F \lor G) \land (F \lor H)$, $F \land (G \lor H) = (F \land G) \lor (F \land H)$ (distributive)
- $F \lor F = F$, $F \land F = F$ (F: False)
- $F \lor T = T$, $F \land T = F$ (T: True)
- $F \lor \neg F = T$, $F \land \neg F = F$

Basic Formulas (cont’d)

- $\neg(\neg F) = F$
- $\neg(F \lor G) = \neg F \land \neg G$, $\neg(F \land G) = \neg F \lor \neg G$ (De Morgan’s Law)
- $F \leftrightarrow G = (F \rightarrow G) \land (G \rightarrow F)$
- $F \rightarrow G = \neg F \lor G$
- $F \land F = F$, $F \lor F = F$
Inference Rules

- Modus Ponens:

\[\frac{F \rightarrow G, F}{G} \]

- Unit Resolution:

\[\frac{F \lor G, \neg G}{F} \]

- Resolution:

\[\frac{F \lor G, \neg G \lor H, \neg F \rightarrow G, G \rightarrow H}{F \lor H} \text{ or equivalently } \frac{\neg F \rightarrow G, G \rightarrow H}{\neg F \rightarrow H} \]

Normal Forms (I)

- literals: \(\text{atom}, \neg \text{atom} \)

- clauses: disjunction of 1 or more literals

\[\text{l literal } \lor \text{l literal } \lor \ldots \]

- terms: conjunction of 1 or more literals

\[\text{l literal } \land \text{l literal } \land \ldots \]

Normal Forms (II)

- Conjunctive Normal Form: conjunction of clauses

\[C_1 \land C_2 \land C_3 \ldots \]

\[\text{e.g. } (\neg F \lor G \lor H) \land (\neg G) \land (K \lor L) \]

- Disjunctive Normal Form: disjunction of terms

\[T_1 \lor T_2 \lor T_3 \ldots \]

\[\text{e.g. } (\neg F \land G \land H) \lor (\neg G) \lor (K \land L) \]

Key Points

- Knowledge representation: logic and frames, pros and cons

- Knowledge bases: the basic components

- Propositional Logic: basic laws

- Inference rules: what is inference, basic inference rules

- Normal forms: definitions
Next Time

Theorem proving:

- Horn clauses, and horn normal form
- forward chaining
- backward chaining
- resolution