Survey: Midterm and 1st Project Due

Preferred exam dates and project deadlines:
- mid-term exam: February 2002
 Su Mo Tu We Th Fr Sa
 10 11 12 13 14 <15> 16 <-- homework 1
 17 18 19 20 21 22 23
 24 25 26 27 28
- project 1: March 2002
 Su Mo Tu We Th Fr Sa
 1 2
 3 <4> 5 6 7 8 9 <-- mid-semester grades
 10*11*12*13*14*15*16 <-- spring break
 17 18 19 20 21 22 23

Emacs Summary

M-x: [Alt]-[x] or [ESC] then [x], C-x: [CTRL]-[x]
- M-x shell (run shell within emacs)
- C-p (↑), C-n (↓), C-b (←), C-f (→)
- C-x C-f (load file)
- M-x lisp-mode (environment for editing lisp code)
- C-s (search forward) C-r (reverse search)
- C-g (abort current command in scratch)
- C-k (cut line) C-y (yank, or paste)
- C-space (begin block) C-x C-x (end block) C-w (cut) C-y (yank, or paste)
- C-x u or M-x undo (undo) ; C-x C-s (save) ; C-x C-c (exit)

Full reference card: http://www.cs.tamu.edu/faculty/choe/courses/02spring/refs

Overview

- Complexity of A*
- IDA* details
- Hill-climbing revisited
- Hill-climbing strategy
- Simulated annealing details

Complexity of A*: Revisited

A* is complete and optimal, but space complexity can become exponential if the heuristic is not good enough.

- condition for subexponential growth:
 \[|h(n) - h^*(n)| \leq O(\log h^*(n)) \]
 where \(h^*(n) \) is the true cost from \(n \) to the goal.

- that is, error in the estimated cost to reach the goal should be less than even linear, i.e. \(< O(h^*(n)) \).

Unfortunately, with most heuristics, error is at least proportional with the true cost, i.e. \(\geq O(h^*(n)) > O(\log h^*(n)) \).
 Linear vs. Logarithmic Growth Error

- Error in heuristic: $|h(n) - h^*(n)|$.
- For most heuristics, the error is at least linear.
- For A^* to have subexponential growth, the error in the heuristic should be on the order of $O(\log h^*(n))$.

Problem with A^*

Space complexity is usually exponential!

- we need a memory bounded version
- one solution is: Iterative Deepening A^*, or IDA^*

__IDA^*__

```function IDA*(problem)```

- $root \leftarrow$ Make-Node(Initial-State(problem))
- $f\text{-}limit \leftarrow$ f-Cost($root$)
- **loop**
  - $solution, f\text{-}limit \leftarrow$ DFS-Contour($root, f\text{-}limit$)
  - if $solution \neq$ NULL then return $solution$
  - if $f\text{-}limit = \infty$ then return failure
- **end loop**

Basically, iterative deepening depth-first-search with depth defined as the $f$-cost ($f = g + n$):

DFS-Contour($root, f\text{-}limit$)

- Find solution from node $root$, within the $f$-cost limit of $f\text{-}limit$.
- DFS-Contour returns solution sequence and new $f$-cost limit.

- if $f\text{-}cost(root) > f\text{-}limit$, return fail.
- if $root$ is a goal node, return solution and new $f$-cost limit.
- recursive call on all successors and return solution and minimum $f$-limit returned by the calls
- return null solution and new $f$-limit by default

Similar to the recursive implementation of DFS.
**IDA*: Evaluation

- complete and optimal (with same restrictions as in $A^*$)
- space: proportional to longest path that it explores (because it is depth first!)
- time: dependent on the number of different values $h(n)$ can assume.

**IDA*: Time Complexity

Depends on the heuristics:

- small number of possible heuristic function values $\rightarrow$ small number of $f$-contours to explore $\rightarrow$ becomes similar to $A^*$
- complex problems: each $f$-contour only contain one new node

if $A^*$ expands $N$ nodes, $\quad IDA^*$ expands

$$1 + 2 + \ldots + N = \frac{N(N+1)}{2} = O(N^2)$$

- a possible solution is to have a fixed increment $\epsilon$ for the $f$-limit $\rightarrow$ solution will be suboptimal for at most $\epsilon$ ($\epsilon$-admissible)

**Hill-Climbing: Revisited**

- no queue, keep only the best node
- greedy, no back-tracking
- good for domains where all nodes are solutions:
  - goal is to improve quality of the solution
  - optimization problems

**Hill-Climbing Strategies**

Problems of local maxima, plateau, and ridges:

- try random-restart: move to a random location in the landscape and restart search from there
- keep $\pi$ best nodes (beam search) *
- parallel search
- simulated annealing *

Hardness of problem depends on the shape of the landscape.

*: coming up next
Beam Search

Best-first search with a fixed limited branching factor

- expand the first $n$ nodes with the best Eval-Fn value, where $n$ is a small number.
- $n$ is called the width of the beam
- good for domains with continuous time functions (like speech recognition)
- good for domains with huge branching factor (like above)

Simulated Annealing (SA)

Goal: minimize the energy $E$, as in statistical thermodynamics.

For successors of the current node,

- if $\Delta E \leq 0$, the move is accepted
- if $\Delta E > 0$, the move is accepted with probability $P(\Delta E) = e^{-\frac{\Delta E}{kT}}$, where $k$ is the Boltzmann constant and $T$ is temperature.
- randomness is in the comparison: $P(\Delta E) < \text{rand}(0, 1)$

$\Delta E = E_{\text{new}} - E_{\text{old}}$.

The heuristic $h(n)$ or $f(n)$ represents $E$.

Simulated Annealing: Overview

Annealing:

- heating metal to a high-temperature (making it a liquid) and then allowing to cool slowly (into a solid); this relieves internal stresses and results in a more stable, lower-energy state in the solid.
- at high temperature, atoms move actively (large distances with greater randomness), but as temperature is lowered, they become more static.

Simulated annealing is similar:

- basically, hill-climbing with randomness that allows going down as well as the standard up
- randomness (as temperature) is reduced over time

Temperature and $P(\Delta E) < \text{rand}(0, 1)$

Downward moves of any size are allowed at high temperature, but at low temperature, only small downward moves are allowed.

- Higher temperature $T \rightarrow$ higher probability of downward hill-climbing
- Lower $\Delta E \rightarrow$ higher probability of downward hill-climbing
**Reduction Schedule**

High to low temperature reduction schedule is important:

- reduction too fast: suboptimal solution
- reduction too slow: wasted time
- question: does the form of the reduction schedule curve matter? linear, quadratic, exponential, etc.?

The proper values are usually found experimentally.

**Simulated Annealing Applications**

- VLSI wire routing and placement
- Various scheduling optimization tasks
- Traffic control
- Neural network training
- etc.

**Key Points**

- Complexity of $A^*$: relation to error in heuristics
- $IDA^*$ details: evaluation, time and space complexity (worst case)
- Hill-climbing basics and strategies
- Beam search concept
- Simulated annealing details: core algorithm, effect of $T$ and $\Delta E$, source of randomness.

**Next Time**

- Game playing: Chapter 5
- Minimax
- $\alpha-\beta$ pruning
- Probabilistic games