Overview

MIDTERM: Friday 3/1 (next meeting)

- Project 1 tips: lists, queues, stacks, and trees
- Unification algorithm
- Unification in LISP
- Factors
- Resolvents

Project 1 Tips

Queues vs. Stacks:

- Queue: append to the end
 \(\text{(append 'a b c) 'd) -\rightarrow (A B C D) } \)

- Stack: append to the beginning
 \(\text{(cons 'd '(a b c)) or (append '(d) '(a b c)) -\rightarrow (D A B C) } \)

 of push
 \(\text{(setq my-stack '(b c d))} \)
 \(\text{(push 'a my-stack) -\rightarrow (A B C D)} \)

Dequeue (Pop)

- \(\text{(car my-stack) -\rightarrow A} \); non-destructive, my-stack = (A B C D)
- \(\text{(pop my-stack) -\rightarrow A} \); destructive, my-stack = (B C D)

Project 1 Tips (cont’d)

- Think in terms of queues and stacks, not in terms of trees, i.e. do not try to implement an elaborate tree structure with pointers etc.
- Try to understand how the General-Search algorithm makes use of the above point.
- For example, when evaluating arithmetic expressions in prefix, postfix, and infix, you don’t need to explicitly represent the parse tree.

Unification: Review

- A substitution \(\theta \) is called a unifier for a set \(\{E_1, \ldots, E_k\} \) iff \(E_1 \theta = E_2 \theta = \ldots = E_k \theta \).
- The set \(\{E_1, \ldots, E_k\} \) is said to be unifiable if there is a unifier for it.

Notes:

Composition of Substitution

Composition of substitution is simply a serial application of the substitutions in question:

- $E(\theta \circ \lambda) = (E\theta)\lambda$

Example: $\theta = \{x/f(y), y/z\}, \lambda = \{x/a, y/b, z/y\}$

- Thus, $\theta \circ \lambda = \{x/f(b), z/y\}$

- Given $E = P(x, y, z)$,
 - $E\theta = P(f(y), z, z)$
 - $(E\theta)\lambda = P(f(b), y, y) = E(\theta \circ \lambda)$

Disagreement Set

Let W be a nonempty set of expressions $\{E_1, \ldots, E_n\}$. The disagreement set D of W is obtained by locating the first symbol (counting from the left) at which not all the expressions in W have exactly the same symbol, and then extracting from each expression E_i in W the subexpression that begins with the symbol occupying that position.

Example:

$W = \{P(x, y, a, f(x)), P(x, y, a, g(x)), P(x, y, a, z)\}$

Symbols to the right of the vertical bar differ.

$$D = \{f(x), g(x), z\}$$

Unification Algorithm

Let $W = \{E_1, \ldots, E_n\}$ be the set of expressions to be unified.

1. If necessary, rename variables so that no pair (E_i, E_j) from different clauses has any variables in common.

2. Set $k = 0$, $W_k = W$, $\sigma_k = \epsilon$ (empty substitution).

3. If W_k is a singleton (contains only one expr), stop; σ_k is a most general unifier for W. Otherwise, let D_k be the disagreement set for W_k.

4. If there exist elements v_k and t_k in D_k such that v_k is a variable that does not occur in term t_k, go to step 5. Otherwise, stop; W is not unifiable.

5. Let $\sigma_{k+1} = \sigma_k \circ \{v_k/t_k\}$ and $W_{k+1} = W_k \{v_k/t_k\}$. (Note that $W_{k+1} = W_k \sigma_{k+1}$)

6. Set $k = k + 1$ and go to step 3.
Unification Theorem

If \(W \) is a finite nonempty unifiable set of expressions, then the unification algorithm will always terminate at step 3, and the last \(\sigma_k \) is a most general unifier for \(W \) (i.e. not unnecessary substitutions).

The algorithm must terminate because each pass through the loop reduces the number of variables by 1, and there are only finitely many of them.

Unification Example

\[P(x, f(x), z) \text{ vs.} \]
\[P(g(y), f(g(a)), y) \]

1. \(\{x/g(y)\} \):
 \[P(g(y), f(g(y)), z) \]
 \[P(g(y), f(g(a)), y) \]

2. \(\{y/a\} \):
 \[P(g(a), f(g(a)), z) \]
 \[P(g(a), f(g(a)), a) \]

3. \(\{z/a\} \):
 \[P(g(a), f(g(a)), a) \]

Unifier: \(\{x/g(a), y/a, z/a\} \)

Representation of Predicates and Terms in LISP

- Constants: \(a = (A) \text{, Socrates} = \text{(SOCRATES)} \)
- Variables: \(x = X, y = Y \)
- Functions: \(f(x) = (F\ X), f(a,y,z) = (F\ (A)\ Y\ Z) \)
- Predicates: \(P(x) = (P\ X), P(x,b,f(z)) = (P\ X\ (B)\ (F\ Z)) \)

Note how the representation of the constants can come in handy.

SUBLIS : substitution in LISP

(sublis <list-of-alist> <expr>): simultaneous substitution

- **alist**, or association list: \((A\ .\ B) \), which is the same as \(\text{(cons } A\ \text{' } B) \) (note that B is not a list but an atom in this case).
- <list-of-alist>: a list of \((<\text{pattern}>\ <\text{replace}>\) pairs.
- <expr>: the expression to be worked on.
- Replace every occurrence of <pattern> in <expr> with <replace>.

Another useful function: (subst <repl> <pattern> <expr>)
SUBLIS Examples

Basically, replace (car alist) with (cdr alist) of each element in the <list-of-alist>:

> (sublis '((x . (20))) '(* x 1))
(* (20) 1)

>(sublis '((x 20)) '(* x 1))
(* (20) 1)

>(sublis '((x 20) (y . 10)) '(* x (/ 5 y)))
(* 20 (/ 5 10))

Unification in LISP

(defun unify (u v)
 (let (($u* (copy-tree u))
 ($v* (copy-tree v)) *subs*)
 (declare (special $u* $v* *subs*)
 (if (unifyb $u* $v*) (or *subs* (list (cons t t)))))
)
)

(defun unifyb (u v)
 (cond ((eq u v))
 ((symbolp u) (varunify v u))
 ((symbolp v) (varunify u v))
 ((and (consp u) (consp v)
 (eq (car u) (car v))
 (eql (length (cdr u))
 (length (cdr v))))
 (every #'unifyb (cdr u) (cdr v)))))

Unification in LISP (cont’d)

(defun varunify (term var)
 (declare (special $u* $v* *subs*)
 (unless (occurs var term)
 (dolist (pair *subs*)
 (setf (cdr pair)
 (subst term var (cdr pair))))
 (nsubst term var $u*)
 (nsubst term var $v*)
 (push (cons var term) *subs*))))

UNIFY : examples

(unify '(p x) '(p (a)))
(unify '(p (a)) '(p x))
(unify '(p x (g x) (g (b))) '(p (f y) z y))
(unify '(p (g x) (h w) w) '(p y (h y) (g (a))))
(unify '(p (f x) (g (f (a))) x) '(p y (g y) (b)))
(unify '(p x) '(p (a) (b)))
(unify '(p x (f x)) '(p (f y) y))

13

14

15

16
Resolution in Predicate Calculus

- Factors
- Binary resolvent
- Properties of resolution

Factor of a Clause

Definition: If two or more literals of a clause C (with the same sign) have a most general unifier σ, then $C\sigma$ is called a **Factor** of C. If $C\sigma$ is a unit clause, it is called a **Unit Factor** of C.

Example: $C = P(x) \lor P(f(y)) \lor \neg Q(x)$.

- The first two literals have a unifier $\sigma = \{x/f(y)\}$, so C has a factor $C\sigma = P(f(y)) \lor \neg Q(f(y))$.

Note: Factors of a clause are much succinct and when two clauses C_1 and C_2 cannot be resolved directly, their factors (let’s call them C'_1 and C'_2) can be resolved.

Resolving Two Clauses

Definition: Let C_1 and C_2 be two clauses (called parent clauses) with no variables in common, and with complementary literals L_1 and L_2 such that L_1 and $\neg L_2$ have a most general unifier σ. Then the clause

$$(C_1 \sigma - L_1 \sigma) \cup (C_2 \sigma - L_2 \sigma)$$

is called a **binary resolvent** of C_1 and C_2. The literals L_1 and L_2 are called the **literals resolved upon**.

Note: A clause can be treated as a set of literals.

$$\{P(x)\} \cup \{Q(x)\} = \{P(x), Q(x)\} = P(x) \lor Q(x)$$

Example: Resolve the following (hint: $\sigma = \{x/a\}$)

$C_1 = P(x) \lor Q(x)$ and $C_2 = \neg P(a) \lor R(y)$.

Resolvent

Definition: A **resolvent** of parent clauses C_1 and C_2 is one of the following binary resolvents:

1. a binary resolvent of C_1 and C_2
2. a binary resolvent of C_1 and a factor of C_2
3. a binary resolvent of a factor of C_1 and C_2
4. a binary resolvent of a factor of C_1 and a factor of C_2

Example: resolve the two clauses
1. $C_1 = P(x) \lor P(f(y)) \lor R(g(y))$ and
2. $C_2 = \neg P(f(g(a))) \lor Q(b)$.

(hint: resolve the factor of C_1 and clause C_2)
Property of Resolution for First-Order Logic

- **Complete**: If a set of clauses \(S \) is unsatisfiable, resolution will eventually derive \(\mathbf{F} \).
 - *Everything that is true can be proved (eventually).*

- **Sound**: If \(\mathbf{F} \) is derived by resolution, then the original set of clauses \(S \) is unsatisfiable.
 - *Everything that is proved is true.*

Weakness of Resolution

Basically, resolution tries to derive

\[
\text{Axioms} \land \neg \text{Theorem} = \mathbf{F}
\]

- Is there a \(\mathbf{F} \) in the axioms? If there is, the whole formula will always be unsatisfiable no matter what.
- Can we tell whether axioms alone can derive \(\mathbf{F} \) ? (generally, this is not the case)

Key Points

- unification algorithm
- factors: definition, and how to derive, why factors are important
- resolvent: definition, and how to derive

Next Time

- Resolution: a full example
- Automating resolution: various strategies
- Uncertainty: chapter 14