Overview

- Research talk wrap-up
- Theorem prover tips
- Learning decision trees

Final exam: Monday, May 6th at 10:30am until 12:30pm in Rm. 126 HRBB.

Prj2 Tips

- Make variables unique across different clauses.
- Within a single clause, a variable may appear several times.
- Across different clauses, a constant or function may appear several times (be careful with function arguments though).
- Test your prover with really simple theorems. Gradually increase the number of clauses.

\[\begin{align*}
(1 & ((P X)) \text{ NIL}) \\
(2 & \text{ NIL} \quad ((P \ (A)))) \\
\end{align*} \]

- All three theorems (howling hound, roadrunner, and customs) are provable.

Inductive Learning

- Given example pairs \((x, f(x))\), return a function \(h\) that approximates the function \(f\):
 - pure inductive inference, or induction.
- The function \(h\) is called a hypothesis.

Inductive Learning and Bias

Given (a) as the training data, we can come up with several different hypotheses: (b) to (d)

- selection of one hypothesis over another is called a bias.
 - exact match to training data
 - prefer imprecise but smooth approximation
 - etc.
• learn to approximate **discrete-valued** target functions.

• step-by-step decision making (disjunction of conjunctions)

• applications: medical diagnosis, assess credit risk of loan applicants, etc.

Decision Trees: What They Represent (cont’d)

- In other words, for each instance (or example), there are attributes (Patrons, Hungry, etc.) and each instance have a full attribute value assignment.
- For a given instance, it is classified into different discrete classes by the decision tree.
- For training, many (instance, class) pairs are used.

Decision Trees: What They Represent

Wait or not (**Yes/No**)? The decision tree above corresponds to:

\[
(Patrons = \text{Full} \land Hungry = \text{No} \land Type = \text{French})
\]
\[
(Patrons = \text{Full} \land Hungry = \text{No} \land Type = \text{Thai} \land Fri/Sat = \text{Yes})
\]
\[
(Patrons = \text{Full} \land Hungry = \text{No} \land Type = \text{Burger})
\]

Decision trees represent disjunction of conjunctions.

Constructing Decision Trees from Examples

- Given a set of examples (training set), both **positive** and **negative**, the task is to construct a decision tree that describes a concise decision path.
- Using the resulting decision tree, we want to **classify** new instances of examples (either as **yes** or **no**).
Constructing Decision Trees: Trivial Solution

- A trivial solution is to explicitly construct paths for each given example.
- The problem with this approach is that it is not able to deal with situations where, some attribute values are missing or new kinds of situations arise.
- Consider that some attributes may not count much toward the final classification.

Finding a Concise Decision Tree

- Memorizing all cases may not be the best way.
- We want to extract a decision pattern that can describe a large number of cases in a concise way.
- Such an inductive bias is called Ockham's razor: The most likely hypothesis is the simplest one that is consistent with all observations.
- In terms of a decision tree, we want to make as few tests before reaching a decision, i.e. the depth of the tree should be shallow.

Finding a Concise Decision Tree (cont’d)

- Basic idea: pick up attributes that can clearly separate positive and negative cases.
- These attributes are more important than others: the final classification heavily depend on the value of these attributes.
Decision Tree Learning Algorithm

Function `DECISION-TREE-LEARNING(examples, attributes, default)` **Returns** a decision tree

Inputs:
- `examples`, set of examples
- `attributes`, set of attributes
- `default`, default value for the goal predicate

1. If `examples` is empty, return `default`.
2. If all examples have the same classification, return the classification.
3. If `attributes` is empty, return `MAJORITY-VALUE(examples)`.
4. Choose an attribute `best` to test and a new decision tree `tree` with root test `best`
5. For each value `v_i` of `best`
 - Let `examples_i` be elements of `examples` with `best = v_i`
 - Let `subtree` be `DECISION-TREE-LEARNING(examples_i, attributes - best, MAJORITY-VALUE(examples_i))`
 - Add a branch to `tree` with label `v_i` and subtree `subtree`

Accuracy of Decision Trees

![Accuracy Graph]

- Divide examples into training and test sets.
- Train using the training set.
- Measure accuracy of resulting decision tree on the test set.

- Some attributes are not tested at all.
- Odd paths can be generated (Thai food branch).
- Sometimes the tree can be incorrect for new examples (exceptional cases).

Choosing the Best Attribute to Test First

Use Shannon’s information theory to choose the attribute that gives the maximum information gain.

- Pick an attribute such that the information gain (or entropy reduction) is maximized.
- Entropy measures the average surprisal of events. Less probable events are more surprising.
Entropy and Information Gain

\[
Entropy(E) = \sum_{i \in C} -P_i \log_2(P_i)
\]

\[
Gain(E, A) = Entropy(E) - \sum_{v \in Values(A)} \frac{|E_v|}{|E|} Entropy(E_v)
\]

- \(E\): set of examples
- \(A\): a single attribute
- \(E_v\): set of examples where attribute \(A = v\).
- \(|S|\): cardinality of set \(S\).

Key Points

Decision tree learning:

- What is the embodied principle (or bias)?
- How to choose the best attribute? Given a set of examples, choose the best attribute to test first.
- What are the issues? noise, overfitting, etc.

Issues in Decision Tree Learning

- Noise and overfitting
- Missing attribute values from examples
- Multivalued attributes with large number of possible values
- Continuous-valued attributes.

Next Time

- Monday: final exam review
- Tuesday: redefined day – general Q and A (attendance not required). Recommended reading.