1 Assignment

Problem 1 [15 points] Write Verilog code that represents a JK flip-flop. Use behavioral code rather than structural code. Recall that a JK flip-flop has the truth table

<table>
<thead>
<tr>
<th>J</th>
<th>K</th>
<th>(Q(t+1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(Q(t))</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(\overline{Q(t)})</td>
</tr>
</tbody>
</table>

Assume that the state changes on a positive edge.

Problem 2 [15 points] Write Verilog code that represents a T flip-flop with an asynchronous clear input. Use behavioral code, rather than structural code.

```verilog
module TFF(clk, T, clr, Q);
  input clk, T, clr;
  output Q;
  ...
endmodule
```

A T flip-flop has the following behavior

<table>
<thead>
<tr>
<th>clr</th>
<th>T</th>
<th>(Q(t+1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(Q(t))</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(\overline{Q(t)})</td>
</tr>
</tbody>
</table>

Problem 3 [25 points] Write a three-bit up/down-counter \(\text{updown}\) using the T flip-flops from the previous exercise. It should have a control input \(\text{down}\) such that if \(\text{down}=0\) then it should behave as an up-counter, and if \(\text{down}=1\) then it should behave as a down-counter.
module updown(clk, clr, Q);
 input clk, clr;
 output [2:0] Q;
...
endmodule

Write a testbench that lets updown count 15 cycles up, and then 5 cycles down, and then finishes the simulation. Use $monitor to trace the output of the updown counter. You can use the m555 module discussed in the lecture to create the clock signal.

Problem 4 [15 points] A sequential circuit has two inputs w_1 and w_2, and an output z. Its function is to compare the input sequences on the two inputs. If $w_1 = w_2$ during any four consecutive clock cycles, the circuit produces $z = 1$; otherwise $z = 0$. For example

w_1: 011011000110

w_2: 1110101000111

z: 0000100001110

Derive a suitable circuit.

Problem 5 [20 points] Write a finite state machine in Verilog for the previous problem. Is this a Moore machine?

Problem 6 [10 points] The following code checks for adjacent ones in an n-bit vector.

```verilog
always @(A)
begin
  f = A[1] & A[0];
  for(k = 2; k<n; k=k+1)
    f = f | (A[k] & A[k-1]);
end
```

With blocking assignments this code produces the desired logic function $f = a_1a_0 + \cdots a_{n-1}a_{n-2}$. What logic function is produced if we change the code to use non-blocking assignments? Explain.

Demonstrate your solutions in your lab sessions, and turn in written solutions for Problems 4 and 6 at the same time.

Reading Assignment Read chapter 7 of the book by Brown and Vranesic. This chapter is freely available from the McGraw-Hill website (use google: mcgraw-hill brown vranesic).