
EFFORT: A New Host-Network Cooperated Framework for
Efficient and Effective Bot Malware Detection

Seungwon Shin, Zhaoyan Xu, and Guofei Gu
seungwon.shin@neo.tamu.edu,{z0x0427,guofei}@cse.tamu.edu

ABSTRACT
Bots are still a serious threat to Internet security. Although
a lot of approaches have been proposed to detect bots at
host or network level, they still have shortcomings. Host-
level approaches can detect bots with high accuracy. How-
ever they usually pose too much overhead on the host. While
network-level approaches can detect bots with less overhead,
they have problems in detecting bots with encrypted, eva-
sive communication C&C channels. In this paper, we pro-
pose EFFORT, a new host-network cooperated detection
framework attempting to overcome shortcomings of both
approaches while still keeping both advantages, i.e., effec-
tiveness and efficiency. Based on intrinsic characteristics of
bots, we propose a multi-module approach to correlate in-
formation from different host- and network-level aspects and
design a multi-layered architecture to efficiently coordinate
modules to perform heavy monitoring only when necessary.
We have implemented our proposed system and evaluated
on real-world benign and malicious programs running on
several diverse real-life office and home machines for several
days. The final results show that our system can detect
all 17 real-world bots (e.g., Waledac, Storm) with low false
positives (0.68%) and with minimal overhead. We believe
EFFORT raises a higher bar and this host-network cooper-
ated design represents a timely effort and a right direction
in the malware battle.

1. INTRODUCTION
Botnets (networks of bot malware controlled machines)

are considered as one of the most serious threats to cur-
rent Internet security[10, 32]. To eradicate threats posed by
bots/botnets, a lot of research has been proposed so far, and
they fall into two main categories: (i) network-level detec-
tion and (ii) host-level detection. Network-level detection
approaches focus on network behavior of bots/botnets and
they typically concentrate on finding signatures or common
communication patterns between bots and their masters [11,
10, 12, 32]. Host-level detection approaches investigate bot
runtime behavior in the host and they mainly employ sys-
tem call monitoring and/or data taint analysis techniques
[18, 20, 28].
Both detection approaches have their own advantages and

disadvantages. Network-level approaches can detect differ-
ent types of bots without imposing overhead to the hosts,
because they mainly monitor network traffic. However, their
limitations appear when they need to detect a bot commu-
nicating through encrypted messages or randomized traffic
[29]. Host-level approaches, on the contrary, analyze suspi-
cious runtime program behavior, so that they can detect a
bot even if it uses an encrypted or evasive communication
channel. However, they typically suffer from performance
overhead because they need to monitor all invoked system
calls [18] at real-time and/or taint memory locations touched
by the program [28].
Observing their clear advantages and disadvantages mo-

tivates us to consider a new system with merits from both
approaches: (i) effectiveness and (ii) efficiency. For the effec-
tiveness, the system should detect malware with few misses.
In addition, the system should not put too much burden on
both host and network to achieve the efficiency.

As a promising step toward such a system, we propose
EFFORT, a new detection framework balanced with high
accuracy and low overhead. EFFORT considers both host-
and network-level features that are helpful to enhance strong
points of each other and complement weak points of each
other, and it coordinates these features to achieve the main
goal (i.e., detecting bots effectively and efficiently).

To build EFFORT, We start with investigating several
notable intrinsic characteristics of recent popular botnets.
First, bots are usually automatic programs without requir-
ing human-driven activities. Second, bots highly rely on
DNS (instead of hard-coded IP address in binaries) for flex-
ible and agile C&C (command and control). In addition,
they use more advanced DNS tricks for robustness and eva-
sion, such as fast-flux service networks or even domain flux-
ing [14]. Third, bots access system resources anomalously
(e.g., registry creation and file read/write) to steal system
information or launch themselves automatically. Finally,
bots are likely to distribute their information for their mali-
cious activities to the network (e.g., sending massive spam)
instead of gaining information from the network which is
common in normal networked user applications and they
tend to minimize incoming C&C command communication
to reduce the exposure/detection probabilities.

Based on their characteristics, we find several useful fea-
tures at host and network level. For efficiency, we per-
form lightweight human-process-network correlation analy-
sis. We correlate interactions between human and process,
and record correlated clues between processes and outgoing
DNS connections. Thus, we can filter majority benign pro-
grams, and focus on very few suspicious automatic programs
contacting DNS servers and start further investigation.

To detect bots effectively, we further employ three inter-
esting new modules. First, we monitor system resource ex-
posure patterns of the suspicious process. Second, we build
a reputation engine to characterize the reputation of a pro-
cess through examining the process and its social contact-
ing surfaces. Our intuition is that the reputation of a pro-
cess could be approximately inferred by the reputation of
its social contact surface, i.e., reputations of communicated
remote hosts. This is intuitively sound because bots are
likely to communicate with “bad” targets while good soft-
ware tends to communicate with “good” ones. Although
a pre-established host reputation database (or blacklist) is
helpful, we do not require it as prior knowledge. Instead, we
can use anomaly-based features from DNS registration infor-
mation. Furthermore, we want to leverage community-based
knowledge and intelligence by using public search engines to
locate information about certain communicated targets and
then infer their reputation. Third, we analyze network in-
formation trading rate for any network process to infer how

1

likely the program is information gaining oriented or infor-
mation leaking/outgoing oriented.
It is well accepted that there is probably no any single

module/feature can detect all bots. We do not claim that
bots cannot evade any of our proposed individual module.
Instead, we rely on a correlative approach to combine in-
formation from multiple complementary modules for a final
decision, because the chance that a bot evades all our mod-
ules is very slim unless they sleep or behave like normal
programs.
In short, our paper makes the following contributions.

• We propose a new host-network cooperated framework
for bot malware detection with correlative and coor-
dinated analysis. This design demonstrates an impor-
tant step from current state of the art toward both
effective and efficient botnet detection.

• We implement EFFORT, a first-of-its-kind real-world
prototype system containing several novel modules to
cover bot invariants at both host and network levels.

• We extensively evaluate our system on real-world data
collected on many real-life machines for several days.
Our results show that EFFORT can detect all 17 real-
world bots and it has only 8 false positives (out of 1,165
benign processes) in about a week of testing (without
any whitelisting). We demonstrate that EFFORT has
almost negligible overhead for host modules and its
network modules such as process reputation analysis
are scalable.

2. SYSTEM DESIGN

Figure 1: EFFORT Design Architecture. M1 is
human-process-network correlation analysis module, M2 is
process reputation analysis module, M3 is system resource
exposure analysis module, M4 is network information trad-
ing analysis module, and M5 is correlation engine.

The overall architecture of EFFORT is shown in Figure
1, which contains five modules:

• Human-process-network correlation analysis module. It
analyzes the interaction and correlation between hu-
man activity, process, and network connection. It tells
whether a network connection is human-driven or bot-
driven.

• Process reputation analysis module. It characterizes
the reputation of a process from the process itself (who
you are) and its social contact surface (the communi-
cated targets, i.e., whom you have talked to).

• System resource exposure analysis module. It examines
the system resource exposure patterns to a suspicious
process in detail.

• Network information trading analysis module. It moni-
tors incoming/outgoing network traffic in order to infer
the information gain/loss in a very light-weight way.

• Correlation engine. It collects all analysis results and
correlates them to make a final decision whether the
process is likely a malicious bot or not.

The overall operation of EFFORT is summarized as fol-
lows. First, Human-process-network correlation analysis mod-
ule finds a process producing bot-driven network connec-
tions and notifies other three modules - Process reputation,
System resource exposure, and Network information trading
analysis modules - about the found process. Second, these
three modules investigate the suspicious process in detail
and each module issues a detection result (but not a final
decision) by its own analysis engine. Finally, Correlation
engine collects the detection results from the above mod-
ules and finally decides whether the process is malicious or
not (final decision).

2.1 Human­Process­Network Correlation Anal­
ysis

Since most running processes are benign, it is relatively
inefficient to monitor all of them in fine-grained detail (e.g.,
monitor system call level activities) all the time. Thus,
our human-process-network correlation analysis module is
designed to sift benign programs out.

Human-Process Interactions Monitoring: Key-
board and mouse are the basic components that link human
and the computer. We monitor keyboard and mouse events
of the host to understand which program has human activ-
ity/interaction. To do this, our event sensor hooks Windows
system calls related to keyboard and mouse events, and also
determines which program generates those events.

Some previous studies (e.g., [6]) also use hooking to cap-
ture automated processes. We differentiate from them in
several aspects. Previous approaches will suffer if a bot sim-
ply imitating human behaviors and creating fake mouse/keyboard
events from virtual devices to confuse the sensor. To ad-
dress this problem, we employ two more robust approaches.
First, our sensor digs into the sources of the events. If the
events are resulted from physical devices connected via PS2
or USB interface, it trusts them; otherwise it regards them
as suspicious. Second, the module investigates whether a
process generating events is running in foreground or not.
We assume that if someone produces mouse or keyboard
events, a process related to the events is shown on the cur-
rent screen with an activated windows (i.e., running in fore-
ground). Thus, if a process producing events is running in
foreground, we trust the process; otherwise we regard the
process as suspicious.

Note that in current implementation, we trust operating
system and we believe it provides true information, a com-
mon assumption widely used in this line of research [18, 6].
Of course, some malware (e.g., rootkit) may infect operating
system and deliver fake information or even kill our system.
This issue could be solved by employing hardware/TPM
[13] or Hypervisor-based introspection and protection [9, 16]
(and thus is out of the scope of this paper).

Process-Network Interactions Monitoring: Fur-
ther different from some previous studies mainly focusing on

2

identifying automated processes, we also trace the process-
network interaction to identify automated processes that
generate automated network connection (particularly DNS
queries). We use a connection sensor to record outgoing net-
work connections from processes in a host. In particular, it
cares about one special network connection, DNS query. As
briefly discussed before, botnets heavily rely on using DNS
for flexible, efficient, and evasive C&C rallying. They can
even use fast-flux service networks [14] to frequently change
the IP addresses associated with one domain name, or even
use domain fluxing [27] to frequently change domain names.
By monitoring these DNS queries, we can obtain valuable
information later in detection analysis, e.g., we can deter-
mine if they are human driven or not, and furthermore we
can even detect if there is fast-flux in use.
Interaction Model Generation and Automatic Con-

nection Detection: Combining information from the event
sensor and the connection sensor, we create a model to de-
scribe which process has which network correlations. The
model employs three metrics: (i) time difference between
the time when a process issues a DNS query and the prior
time when a process produces a mouse/keyboard event, (ii)
the source of the events, and (iii) whether a process is run-
ning foreground or not at the time. We regard an event of
a process is generated from human, if the time difference is
very small, the event is from actual physical devices, and
the process is running foreground.
Practical Considerations: However, in practice, this

intuitive model may not work for all DNS queries (but work
well for IP address case). The reason is because some operat-
ing systems provide helper functions of relaying a DNS query
for other processes, e.g., Windows uses the svchost.exe pro-
cess for this purpose for some sockets. Thus, DNS queries
are sent from helper processes instead of the original pro-
gram. To address this issue, we maintain a list of returned
IP address(es) from a DNS query (sent by helper processes),
and observe successive outgoing network connections to wait
for finding the actual program (process) to connect to the
returned IP address(es)1. If we find the process, we can
create a model by using metrics (mentioned above) for the
process.

2.2 Detecting Malicious Processes
With the help of the previous module, we can focus on

some suspicious processes. However, we need more deep
analysis to investigate whether they are really malicious or
not. To do this, we perform a set of independent and par-
allel checks. We check the reputation of the process and
its social contact surface (the reputation of targets it has
communicated with). We investigate the system resource
exposure patterns to the process. Furthermore, we investi-
gate network information trading of the process. We detail
our design of these three modules as follows.

2.2.1 Process Reputation Analysis Module
First we use a novel approach to determine the reputa-

tion of the suspicious process. A quick intuitive observa-
tion is that we could determine the reputation of a process
by not just looking at “who you are”, but also referring
to “whom you have talked to”. Bots are likely to contact
some “bad/suspicious” servers/peers automatically in order

1At this time, we do not need to monitor all network con-
nections, we only monitor first packet of each connection.

to be controlled. On the contrary, benign programs are rel-
atively unlikely to connect to “bad” targets automatically.
Thus the problem of determining the reputation of a process
could be roughly inferred by the contacting social surfaces of
the process and it can be approximately reduced to the ac-
cumulation of “bad” communication targets (domains). In
the context of domain names, then we need to determine
the reputation of a domain name.

Domain Information Collection: We collect repu-
tation information of the domain by employing three types
of sensors. First, we employ a whois sensor to detect some
anomaly features in its registration information, such as do-
main creation date. Second, we use a blacklist sensor to in-
vestigate its previous records in well-known blacklists (e.g.,
SpamHaus [26]), which give us relatively clear clues whether
the domain has a history of malicious activity or not. Fi-
nally, since blacklists might not be complete, we apply a
search engine sensor to get another heuristic that can lever-
age community-based knowledge and intelligence, i.e., ask-
ing a search engine to infer the reputation of given domain
names (IP address could work too), which is motivated by
the googling idea in [30].

Feature Extraction and Normalization: Before ap-
plying collected data to a model creation, we express the
features numerically and normalize them. In terms of do-
main registration information, we use the following features
(the intuitions of the expressions are described in brackets):
(i) difference between current date and domain expiration
date (most malicious domains registered very recently), (ii)
difference between domain expiration date and creation date
(most malicious domains have short life time), and (iv) num-
ber of domain registration (malicious domains are typically
registered to few name servers).

An interesting and novel component in the process repu-
tation module is our search engine sensor. The general intu-
ition is that some of the knowledge about the domain or pro-
cess is probably already discovered/reported/summarized
by other people in the world. Thus, we can leverage the
wisdom of the whole Internet community by using search
engines like Google. More specifically, we consider the fol-
lowing simple yet effective features: (i) whether the domain
name is well-indexed (thus returning many results), (ii) in
the top returned web page results, whether the domain name
and the process name are frequently used in a malicious con-
text, e.g., they are surrounded by malicious keywords such
as bot, botnet, malware, DDoS, attack, spam, identity theft,
privacy leak, command and control (C&C). We also use nu-
meric values to represent these features. Typically, contents
of returned search results include three different types of in-
formation: (i) the title, (ii) the URL, and (iii) the relevant
snippet of the returned web page. We treat each type as dif-
ferent features, and we assign “1” if returned contents (title,
URL, and summary) include the queried domain name. We
inspect the returned results to see whether there are any
malicious keywords or not. If there are any, we give “0” for
its value.

In the case of the blacklist, it is very obvious that if a
domain can be found in blacklists, it is suspicious. We give
“0” if it is in blacklists, otherwise “1”. The features related
to returned results by a search engine and blacklist are al-
ready normalized, i.e., their values are between “0” and “1”.
However, features of domain registration can be varied dy-
namically. To make their values range between “0” and “1”,

3

we employ a Gaussian normalization approach. It regards
a distribution of data as Gaussian function and maps every
data point into the probability of Gaussian function.
Process Reputation Model Creation: We employ a

Support Vector Machine (SVM) classifier [5] for the process
reputation model. The SVM classifier maps training exam-
ples into feature spaces and finds (a) hyperplane(s) which
can best separate training examples into each class (the de-
tailed information of the SVM classifier will be explained in
Appendix A.1).
In this model, we consider that the normalized features,

which are mentioned above, are training examples. In ad-
dition, we define that there are two classes - benign and
malicious - in this model, thus the normalized features will
represent one of the two classes. Finally, we will find (a) hy-
perplane(s) which can best separate training examples into
each class. Then, we can obtain a SVM classifier for the
process reputation model.
Anomalous Process Reputation Detection: It is

very frequent that a process contacts several different do-
mains during a certain period. Thus, we examine all con-
tacted domains using our trained SVM model, and deter-
mine whether “bad” domains (i.e. classified as malicious
domains) exist or not. If there exists at least one, we con-
sider the process reputation as bad (malicious), otherwise it
is good (benign).

2.2.2 System Resource Exposure Analysis
If a bot infects a host, it usually tries to do something

useful for its master (to make profit), e.g., stealing infor-
mation, sending spam, and launching DDoS attacks [15].
These operations consume system resources - memory, cpu,
and network - of the host, read/modify files or registries [20].
If we monitor how system resources are exposed to a process
(and to what degree), we could infer its anomalous access
patterns.
System Resource Exposure Patterns Monitoring:

A system resource exposure sensor monitors resource access
activities of a suspicious process. It monitors how critical
resources such as files, registries, and network sockets are
exposed to the target process. Although this sensor shares
some similar motivation with related work [20], we use dif-
ferent and more light-weight features and detection models
as described below.
System Resource Exposure Model Creation: To

build this model, we use the following heuristics: (i) typi-
cally normal processes rarely access files in other user’s fold-
ers and system directories, (ii) typically normal processes do
not modify critical registries (with a few exceptions), and
(iii) typically normal processes do not create a large num-
ber of sockets in a short time period. These heuristics are
not perfect, i.e., some normal processes might have some
of these patterns. Our goal of this module is not to have
zero false positive, instead, we want to detect most of these
system-resource-consuming malware. Thus, we believe these
heuristics are reasonable.
More specifically, these heuristics can be represented as

the following events Yi of a process:
• Y1: access files in other user’s folders
• Y2: access files in system folders
• Y3: modify critical registries
• Y4: create a new process
• Y5: create too many network sockets within a short

time window
To build a system resource exposure model, we employ a

one-class SVM (OCSVM) classifier [24]. We use one-class
instead of two-class SVM is because we will only use benign
programs in training. To get the ground truth information
of the system resource usages of malware is tricky, e.g., some
malware may refuse running or behave normally. Thus, even
if we obtain the information of malware, it may not represent
its behavior clearly. To address this issue, we only use the
system resource access patterns of known benign processes
(i.e., one side of data). More detailed information on our
use of OCSVM is explained in Appendix A.2.

2.2.3 Network Information Trading Analysis
Typically, most user programs will act as clients rather

than servers, and clients will try to gather information rather
than distributing information. That is, if we treat a program
as a communication information processing unit, normal
client programs are more likely to be an information gain-
ing process. However, a bot will behave differently. Usually,
the data that a bot receives is a command from a botmaster,
therefore the amount of the data may be small (to minimize
the chance of being detected). However the data sent out
by the bot could be relatively large as it performs malicious
operations in the network. Information theft, DDoS attack,
and massive spam sending are good examples.

Lightweight Network Traffic Monitoring: To ob-
serve network information trades, a network sensor captures
network flows between a process and a target address and
stores them. An important thing here is that this sensor
monitors network traffic generated by the specific process
not by the host. It could give us more fine-grained obser-
vations of network information trading. Our sensor is very
simple and lightweight, because it does not need to analyze
payload contents and it is robust against encryption used by
bots.

In addition, we monitor the host level network connec-
tions to obtain an aggregated view of network information
trading. At this time, the sensor only measures the number
of outgoing connection trials (i.e. TCP SYN packets and
first UDP packets). We believe that this aggregated view
gives us a good clue to find DDoS, network scan, or massive
spam mail sending.

Network Information Model Creation: We use a
simple method to model the network information trade rate,
i.e., the ratio of incoming and outgoing packets/bytes ex-
changed between a process and a remote site in a certain
period. We define the number of incoming and outgoing
packets as θ1 and θ2, and the number of incoming and out-
going bytes as δ1 and δ2. Thus, each ratio can be represented
as θ1

θ2
and δ2

δ2
.

To observe an aggregated view, we employ a time win-
dow wi for each host i. We measure how many network
connection trials happen in the time window.

Anomalous Information Trading Detection: In the
case of the fine-grained view, if one or both of the predefined
ratio values of a process is (are) smaller than some threshold
γ1 (for packet) and γ2 (for bytes), we consider the process
anomalous, otherwise normal. Also, we consider the network
behavior of the host is anomalous, if a host creates network
connection trials larger than a threshold τ in wi.

2.2.4 Correlation Engine

4

Module Evasion Ways Evasion Costs
human-process-
network correlation

compromise process which people frequently use,
and initiates connections when user actually run

very hard to run bots in the host

process reputation use benign domains for C&C channels hard to control bots, thus less efficient
system resource ex-
posure

do not access system and other users’ folders, do
not create processes, do not create a lot of net-
work sockets

very hard to perform malicious activities

network informa-
tion trading

do not distribute information to remote site or
send more information to victim host

hard to perform DDoS and send spam email mas-
sively, more chances of botmaster being exposed
to public

Table 1: Evasion ways and associated costs for each module.

After each module makes its own decision, the correlation
engine will combine these results and make a final decision
using a weighted voting system. It is worth noting that
as any intrusion detection system, most of our individual
modules might be evaded by very carefully designed bots.
Indeed in the evaluation we will show that most modules
will have some false negatives and/or false positives. How-
ever, when combining all modules together, we can achieve
much better results, as demonstrated in Section 4. We also
note that even individual evasion is possible, it will com-
promise the utility and efficiency of bots. And to evade all
our modules is extremely hard without significantly compro-
mising the bots’ utility or even rendering the bots useless.
We extensively discuss possible evasion attempts and their
implications, possible solutions in Section 6.
At the correlation stage, we should determine the weights

of the decision of each module. We can also employ SVM
technique to determine which element (i.e. decision result
of the module) is more important (i.e. should have more
weight) [24]. To apply the SVM technique, we need training
examples of both sides - malicious and benign. However,
here we have the same issue as the system resource exposure
model creation mentioned in Section 2.2.2. It would be rela-
tively difficult to collect all the information of the malicious
side. Thus, we decide to employ OCSVM to determine the
weight [24]. The way how to determine the weights is same
as the method explained in Appendix A.2.

2.3 Evasion Ways and Associated Costs for
Each Module

It is possible for botmasters to evade each module. If
they want to evade the human-process-network correlation
analysis module, their bots should not produce automatic
network connections. Thus, bots have to compromise a pro-
gram which is very frequently used by people and contact
their masters when people are actually using the program.
Moreover, the contacts have to be done when people cre-
ate real mouse or keyboard events. It might be very hard
to implement bots which can meet all conditions described
before.
Likewise, we have thought possible evasion ways of our

modules and the costs from the evasions, and we summarize
them in Table 1. As explained in Table 1, to evade our
module, botmasters consider a lot of different factors and it
makes them hard to implement new bots. Although they
build a new bot, which are able to evade all our modules,
the bot might be useless because it is very hard for the bot
to perform malicious activities in the host. We leave a more
detailed discussion of evasion in Section 6.

3. SYSTEM IMPLEMENTATION

3.1 Host­Level Modules Implementation
Our human-process-network correlation analysis module

captures the mouse and keyboard events using Windows
system functions. Basically, Windows provides functions to
capture the events from external devices [23]. Using these
APIs, we implement the event sensor which identifies which
process generates the events. In addition, it investigates
whether the events are generated from real physical devices
and the process is running foreground with the help of Win-
dows system functions. We also add the function to store
captured information (process, event time) to the Shared
Memory area.

To capture the outgoing DNS queries, TCP SYN, and
UDP packets, we use the WinPcap library [31]. It provides
functions to collect raw level network packets on the Win-
dows OS, with little overhead. Moreover, connection sen-
sor does not monitor all network packets, but monitor only
DNS, TCP SYN and UDP packets. It also reduces the over-
head, since those packets comprises a small portion of all
network packets.

Whenever there are network events we should capture,
our module also identifies which process produces them and
verifies whether the process is related to the human actions
or not. However, if a process uses a helper process for a DNS
query, we could not directly use it. To address this problem,
we check the process that produces the DNS query auto-
matically and if it is a helper process (e.g., svchost.exe), the
module waits a DNS reply which contains the IP address of
the domain. Then, if there is an automatic connection from
the process to that IP address after the DNS query, the
module knows that the process issues the DNS query. We
use GetExtendedTcpTable and GetExtendedUdpTable func-
tions to recognize which process creates the connections. If
we observe the TCP or UDP connection, we will call these
functions to identify which process acquires the source port
number of the connection.

We implement the system resource exposure analysis mod-
ule based on EasyHook [8]. EasyHook is a successor and
enhanced version of Detours [7], and it provides an interface
letting us performWindows API hooking. The hooking abil-
ity allows us to observe how a process works and which sys-
tem calls are invoked by the process. We select 28 system
calls to understand the exposure patterns of the process.
The selected system calls are related to the access of the
system resources, such as files, registries, network sockets,
and creation of a process. In addition, we employ TinySVM
library [19] to create the system resource exposure model.

5

3.2 Network­Level Modules Implementation
To gather network features, the process reputation anal-

ysis module should utilize multiple network services such
as whois services, blacklist identification services, and web
searching services. Whenever the module receives a suspi-
cious process and its contacting domains, it sends a query
to multiple network services to gather network features and
cache them for a while. Also, we use TinySVM library [19]
to create the process reputation model. For a network infor-
mation trading analysis module, we capture network packets
using the Pcap library.

3.3 Correlation Engine Implementation
We implement the correlation engine as an independent

process (using TinySVM library [19]) and it will wait for
a message from each detection module, and finally decide
whether the process is malicious or not.

4. EVALUATION
In this section, we first show our real-world data collec-

tion of both benign and malicious programs. We discuss
our model training and followed by real-world bot detection
results. We then discuss our false positive test. Finally, we
report the efficiency, performance overhead, and scalability
of each module in the EFFORT system.

4.1 Data Collection and Usage

4.1.1 Benign Data Collection
We have installed our modules into 11 different real-life

hosts to collect the information of process activities and
network behaviors for several days. These 11 machines are
used by diverse users (including some lab members, friends
in different majors, housewives) in the office or home. These
machines are used in real-life operation for diverse usages,
e..g, some users use network heavily for finding (or sharing)
some information from (or through) networks, and some
users mainly use for scientific simulation or regular doc-
ument editing. The collection has been done in working
hours on business days. We carefully examine to make sure
that there are no malicious programs (especially bots) in the
hosts, thus we consider that the collected data can be used
as benign examples.
We explicitly collect data in two periods for different pur-

poses: training and testing. We have collected training data
from 6 machines and the collected data is denoted as SET-1.
Later we have collected testing data on 8 machines (among
them, 3 machines are also used for training data collection,
but 5 machines are newly added). The data for testing is
denoted as SET-2. Note that we intentionally test sev-
eral new machines that we have no training data collected.
This is to demonstrate that our training models are pretty
generic and not sensitive or limited to specific programs or
machines. Some detailed information of SET-1 and SET-2
is summarized in Table 2.
In terms of normal WIndows programs installed on these

machines that have generated network communications, they
are very diverse, covering application programs such as browsers,
multimedia applications, Windows Office programs and P2P
applications. In training dataset SET-1, we have 61 distinct
programs. And we have 71 programs in SET-2 to evaluate
our system (false positive test). Program examples are listed
in Table 3.

Date Set Program Examples
SET-1 Google update, MS Word, Tortoise SVN, Vmware, Gom

player, Bittorrent, Java, WinSCP, WeDisk (p2p pro-
gram), Emule, Internet Explorer, Chrome, FireFox,
iTunes, Thunderbird, EndNote, Skype, Putty, Adobe-
Updater, MS Sidebar, Visual Studio 2010, GoogleTalk,
QQ (Chinese chatting program)

SET-2 Google update, Gom Player, Tortoise SVN, Internet Ex-
plorer, Chrome, MS Word 2010, Outlook 2010, Gom
Audio, McAfee update, FireFox, Skype, SohuNews, MS
Powerpoint, Google Talk, Eclipse, AirVideo, QQ, Km-
player, Bittorrent, Emule, Windows media player, Drop-
box, Windows live toolbar, MS Clip Organizer, Windows
Error Reporter, Alzip, MS windows defender, Windows
Task Manager, Vmware, MS Office Protection, Adobe
synchronizer, SeaPort (MS search enhancement broker
program), Sophos Security update, Putty, WeDisk

Table 3: Example Benign Programs in SET-1 and
SET-2

4.1.2 Bot Malware Data Collection
To test the false negative or detection rate on real-world

bots, we build a virtual environment to run several col-
lected real-world bots. The environment consists of three
virtual machines which individually served as an infected
host, a controller, and a monitor machine. All of them in-
stall Windows XP SP3 operating system with basic software
installed, such as Internet Explorer browser and Microsoft
Messenger. At the infected host, we create independent
snapshot for each individual malware instance to ensure no
cross-infection between different malware. Our host-based
modules are also installed to collect the information of pro-
cess activities and network behaviors for these bots. At the
monitor machine, we install a fake DNS server to redirect all
the DNS queries. At the controller side, we install various
malware controllers we could find to manipulate the infected
machine. We intend to reconstruct realistic attack scenarios
that a botmaster sends commands to his zombie army.

We have used a total of 17 different bots (including Pea-
comm/Storm, Waledac, PhatBot). Their names, C&C pro-
tocols, and sample functionalities are summarized in Table
4. Since we just have binary samples of most bots except
three (B1, B2, and B5), we install and simply run them.
Among them, 3 botnets (B1, B2, and B5) use IRC protocol,
2 botnets (B4 and B10) use HTTP protocol, 2 botnets (B3
and B4) use P2P protocols, and other 9 botnets use cus-
tomized protocols. In addition, three botnets (B3, B4, and
B7) use encrypted protocols to evade network-level detec-
tion. In terms of their actively spreading time in the wild
(i.e. when they infect victims highly), it varied from 2003
(B7) to recent (B4, B16). Since these collected botnets can
cover diverse cases (e.g. from old one to currently working
one, different types of protocols including encryption, and
various kinds of malware functionalities), we believe that
they can fairly validate our system’s detection rate (or false
negative rate).

We note that the separate collection of bot malware data
and benign program data in our evaluation does not affect
the accuracy of false positive/negative testing because our
monitoring/recording/detection granularity is per-process in-
stead of per-host (and obviously a bot program is a separate,
different program from a normal program). Thus, we can
easily mix the bot malware data and benign testing data
SET-2 to simulate real-world scenarios of bots running on

6

SET-1 (collected Nov. 2010) SET-2 (collected Apr. 2011)
Host ID Usage Programs Connection Trials Collection Time Programs Connection Trials Collection Time

A Office 7 252 < 1 day - - -
B Home 8 10,927 4 days - - -
C Office 19 5,740 5 days - - -
D Office 16 7,859 3 days 37 113,067 12 days
E Office 9 5,098 4 days 12 20,711 6 days
F Home 27 55,586 7 days 22 48,264 6 days
G Office - - - 16 12,169 4 days
H Office - - - 11 5,134 4 days
I Office - - - 8 17,373 4 days
J Office - - - 13 4,776 5 days
K Home - - - 10 14,455 5 days

Table 2: Benign Dataset summary. (Programs represent the number of programs producing network con-
nections)

ID Name Protocol Sample Functionalities

B1 PhatBot IRC Steal Key, Spam Mail Send,
Network Scan

B2 JarBot IRC Kill Process, Steal Key
B3 Storm/Peacomm P2P ∗ Other
B4 Waledac HTTP,

P2P ∗
Other

B5 PhaBot.α5 IRC Other
B6 Flux Custom Operate/Modify File, Kill

Process, Capture Desk-
top/Screen,

B7 nuclearRat Custom
∗

Download Update

B8 BiFrost Custom Operate File, Kill Process,
Capture Screen, Steal Key

B9 Cone Custom Operate file
B10 Http-Pentest HTTP Operate File, Kill Process,

Capture Screen
B11 Lizard Custom Capture Screen, DDoS
B12 PanBot Custom Flooding
B13 Penumbra Custom Operate File, Create Shell
B14 SeedTrojan Custom Download Update
B15 TBBot Custom Capture Screen, Create Shell
B16 Sality Custom Others
B17 Polip Custom Others

Table 4: Bots for Evaluation (Custom denotes a bot-
net using its own protocol. ∗ represents the protocol
is encrypted. Other denotes other network/system
malicious operations not categorized in the table.)

some normal machines.

4.2 Model Training
Based on SET-1 data, we have created detection models

for each module.
Process Reputation Model: From the collected data

in SET-1, we find that processes have contacted 7,202 dif-
ferent domains. In order to create the process reputation
model, we extracted features as described in section 2.2.1.
At this time, we consider that all collected domains are be-
nign, hence we will use them to represent the benign class.
We also need malicious domains to represent the malicious
class. For that purpose, we have collected recent 150 mali-
cious domains from [22] and also extracted the correspond-
ing features. Using these collected features, we train a SVM
model for the classifier.
System Resource Exposure Model: We analyzed

system resource exposure patterns of benign processes to
create the one-class system resource exposure model. Here,

we will only use information of benign processes and employ
a OCSVM classifier to build the model. To do this, we use
77 collected benign processes information in SET-1. Repre-
sentative benign processes here are the instances of browsers
(e.g., Chrome, Firefox, IE), mp3 playing programs (e.g.,
Winamp, Gom Player), p2p client program (e.g., Emule),
and other programs such as MS Word, Visual Studio, Putty,
Google Talk (more program examples are listed in Table 3).
We extract each feature defined in Section 2.2.2 from the
processes and build the OCSVM classifier.

Network Information Trading Model: We analyzed
the network flow patterns and verified that most benign
user programs act as clients instead of servers. We measure
the ratio between incoming packets (or bytes) and outgoing
packets (bytes). We apply the ratio of the incoming and
outgoing packets to discriminate a malicious process from a
benign process. It is obvious that when a bot delivers its
own information to a master, we could detect them easily
by observing the ratio.

We investigate the number of network connection trials of
a host. We find in our training dataset that the maximum
network connection trials of a host within a certain time
window (2 seconds) is 41. Based on this result, we simply
set the threshold τ as 49 (with 20% of error margin to be
conservative).

Correlation Engine Model: To calculate weights for
the correlation engine, we select 27 benign processes, which
produce network connections frequently from SET-1. Most
of them are processes of browsers, multimedia applications,
and p2p client programs. We collect their detection results
which are performed by our detection modules. Then, we
train an OCSVM classifier using the collected results and
determine the weights.

4.3 Detection Results of Real­world Bots
We begin our false negative evaluation with the test of

the human-process-network correlation analysis module, fol-
lowed by the results of other modules.

4.3.1 Detection Results of Automatic Connections
First, we test whether a bot program really generates au-

tomatic connections to remote servers and whether we can
use the human-process-network correlation analysis module
to detect them. To test this, we installed each bot in a host
and leave it without any intervention. After a while, we find
that all installed bots issue automatic connections to some
remote servers (to be controlled). All of the automatic con-

7

nections are captured by our human-process-network corre-
lation analysis module and the detected information is de-
livered to other upper-layer modules.

4.3.2 Detection Results of the Process Reputation
Model

The process reputation analysis module receives domain
names that a bot process contacts. Then, the module an-
alyzes the reputation of contacted domains. Since a bot
contacts multiple domains, we analyzed all contacted do-
mains. If the module finds any malicious domain from the
contacted domains, it considers the process malicious.
The detection results on all bot programs are shown in Ta-

ble 5. As shown in the Table, the process reputation analysis
module detects 12 bots but misses 3 bots (B2, B3, and B4).

ID Contacted
Domains

Detected
Domains

ID Contacted
Domains

Detected
Domains

B1 1 1 B10 1 1
B2 1 - B11 1 1
B3 2 - B12 1 1
B4 1 - B13 2 2
B5 6 2 B14 1 1
B6 3 2 B15 1 1
B7 2 1 B16 4 2
B8 3 2 B17 5 1
B9 2 2 -

Table 5: Detection Results of Automatic Connec-
tions

We investigate why our module missed these three. In the
case of B2 (Peacomm) and B3 (Waledac), both bots only
contacted the remote server using direct IP addresses in-
stead of domain names. Of course, we can also apply the IP
addresses to our module. However, unfortunately, their con-
tacting targets are either private IP addresses (192.168.X.X)
or some hosts for which we could not get any useful infor-
mation from the third parties.
B4 (JarBot) contacts a regular IRC server and the server

has been operated for several years and we could not find
any malicious keyword from search results.

4.3.3 Detection Results of the System Resource Ex­
posure Model

Receiving the information of an automatic connection trial
from the human-process-network correlation analysis mod-
ule, the system exposure analysis module begins examining
the target process.
When we test the functionality of each malware listed in

Table 4, we find that the system exposure analysis mod-
ule detects most of the malicious operations because many
of these malware programs access system resources anoma-
lously. The detection results are summarized in Table 6
(marked with “S”).
It only misses 2 malicious operations of “B6 (Flux)”, the

first operation is to operate file which moves/creates a file
in the host, and the second operation is to capture screen
which takes a snapshot of the current screen.
When we analyze their resource exposure patterns, we

find that their operations are very similar to normal pro-
grams. In the case of operate file, malware just creates a
file under its permission and reports its success to a remote
server. In the capture screen case, malware captures the cur-
rent screen, saves in its local folder, and delivers captured

screen information to a remote server. Both operations (in
the point of host view) are very similar to resource exposure
patterns of normal applications - creates a file and saves it
in its local folder. However, we believe that these operations
will be detected by the network information trading analy-
sis module, because they distribute more information to the
outside.

4.3.4 Detection Results of the Network Information
Model

After notifying an automatic connection, the network in-
formation trading analysis module captures network traffic
between the process (not a host) that issued an automatic
connection and some remote server(s). If the process sends
more packet/bytes than receives packets/bytes, our module
considers it anomalous.

As listed in Table 6 (marked with “N”), the network trad-
ing information analysis module detects most malicious op-
erations. It misses 8 malicious operations related to down-
load updates and file modification or operation. In the case
of the download updates, the process gains more data, so
that our module can not detect an anomaly. In addition,
sometimes a botmaster sends commands frequently to an
infected host, but does not require an answer. In this case,
a bot also obtains more data. In terms of the aggregated
view, our module detects all massive outgoing connection
trials, such as DDoS and flooding.

4.3.5 Correlated Detection Results
If any of the above modules determines its decision, the

decision result is delivered to the correlation engine. Based
on all delivered results, the correlation engine makes a final
decision for a process.

When we test malicious operations, the correlation engine
can detect all malicious operations by bots. As we discussed
before, even though some module misses an anomaly of an
attack, other modules will complement it, thus our combined
results can still detect all attacks and the combined results
are shown in Table 6.

4.4 False Positive Test Results
In order to determine whether our modules misjudge be-

nign processes as malicious or not, we have tested 1,165
benign processes in SET-2, representing 71 distinct nor-
mal programs. They are general Windows applications pro-
grams such as browsers (e.g., IE, Chrome, Firefox), P2P
software (e.g., Bittorrent, Emule, Skype), AV tools (e.g.,
McAfee, MS windows defender, Sophos), IM tools (e.g.,
Skype, QQ, Google Talk), office programs (e.g., Word, Pow-
erpoint), multimedia programs (e.g., Gom, Kmplayer) (more
shown in Table 3).

Among all 1,165 processes (that have network communica-
tions), our human-process-network correlation analysis mod-
ule detects 490 processes that produce automatic network
connections. Thus, these 490 processes are further investi-
gated by other three modules. Process reputation analysis
module detects 2 processes as suspicious, system resource
exposure analysis module considers 14 processes suspicious,
and network information trading analysis module detects 237
processes as suspicious.

In the case of process reputation analysis module, 2 de-
tected processes are browser processes and they visit some
web sites. One of the sites sells some Chinese software pro-

8

Functionality B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17

Operate file P,N P,S P,S,N P,S,N P,S,N

Modify file P,S

Kill process S,N P,S P,S P,S,N

Capture Desktop P,S,N

Capture screen P,N P,S,N P,S,N P,S,N P,S

DDoS P,S,N

Flooding P,S,N

Create Shell P,S,N P,S,N

Download update P,S P,S

Steal key P,S,N S,N P,S,N

Spam Mail Send P,S,N

Network Scan P,S,N

Other Operation S,N S,N P,S P,S,N P,S

Table 6: Detection Results of All Modules (shaded cells represent functionalities provided by malware. Each
“P”, “S”, and “N” denotes each process reputation analysis, system resource exposure analysis, and network information
trading analysis module detect the functionalities, respectively.

grams and it is registered very recently (2011). In addition,
several visited web sites are enlisted in blacklists and we
find some malicious keywords such as spam from web search
results for the sites.
The 14 processes detected by system resource exposure

analysis module are 5 Chrome browser processes, 3 Firefox
browser processes, 1 Internet Explorer browser process, 1 Sa-
fari browser process, 2 Gom player (multimedia player) pro-
cesses, 1 Seaport (MS search enhancement broker) process,
and 1 MathType (mathematical equation editor). Most of
the 10 browser processes are detected because they create
new processes and access system folders. Gom player pro-
cesses try to access other users’ folders, Seaport process ac-
cesses Windows system folders, and Mathtype process create
new processes. Thus, our system resource exposure analysis
module considers them suspicious.
Network information trading analysis module detects 253

processes as suspicious, and most of the processes are browser
and program update processes. They send some information
to remote hosts with gaining less (or no) information. Since
we have not captured payload information of network traces,
we could not understand why they send out more informa-
tion. However, we infer that they might send information of
current status of a host to remote servers or send query to
remote mail servers to check new update.
Even though each module misjudges some benign pro-

cesses as suspicious, it does not mean that our correlation
analyzer regards them as malicious. Since correlation ana-
lyzer correlates all results from three modules, it determines
a process as malicious only if two or three modules mis-
judge at the same time. In our test, we find 8 processes
are misjudged by multiple modules, i.e., we have 8 false
positives reported. Among them, 7 processes (4 Chrome
browser, 1 Internet Explorer, 1 Gom player, and 1 Seaport
processes) are detected by system resource exposure analy-
sis and network information trading analysis module, and
1 process (Chrome browser process) is detected by system
resource exposure analysis and process reputation analysis
module. Thus, the false positive rate of our system is only
0.68% (8 out of 1,165). We consider it very low that only
8 false positives found in about a week of testing time on
all 8 real-world heavily-used machines. If we can apply a
whitelisting approach, our false positives could be easily sig-
nificantly reduced.

4.5 Efficiency of EFFORT
To show the efficiency of EFFORT, we measure how many

processes are deeply/heavily investigated in real world. It

can be understood by measuring how many automatic con-
nections there are because our system only focuses on pro-
cesses generating automatic network connections. We an-
alyze the number of automatic connections and processes
producing them in SET-2.

We find 231,613 connection trials in SET-2. Among
them, 136,265 connections are automatically generated. The
rate is quite high (58.83%). However we find that most of
them are heading to hosts in local networks. For example,
spoolsv.exe and taskeng.exe are the Windows system pro-
cesses handling network or printing services and they con-
tact network printers or sharing folders in local networks.
In addition, synergyc.exe is a process to share mouse or key-
board with multiple hosts. They generate a lot of automatic
connections to poll hosts or printers in the local networks.

We consider that we could ignore these automatic connec-
tions contacting local trusted networks, because it is very
unlikely that a botmaster runs a server in the local network.
There are 111,699 connections to local networks, and by
removing them we finally have 24,566 connections, which is
10.6% of all connections. Among 24,566 connections, 10,154
connections (more than 40% of them) head to well-known
web sites such as Google.com and Yahoo.com. The connec-
tions visiting to these domains could be ignored if a whitelist
approach is employed. To be conservative, we let EFFORT
keep investigating all the automatic connections.

4.6 Performance Overhead of EFFORT
We have measured the overhead of each module to fur-

ther verify the efficiency of EFFORT. In this measurement,
we first show how our module in host (i.e., system resource
exposure analysis module) affects the system and other ap-
plications, and then we will show the overhead of our net-
work modules and demonstrate how they are scalable in real-
world deployment.

To measure the performance overhead of the module in
host, we use two metrics: memory usage and program delay.
The memory usage represents how our modules consume
the resources of memory and the program delay represents
how our modules make the programs slow down when our
modules are running. To measure the program delay, we se-
lect three types of test programs: Internet Explorer which
produces network connections frequently, Calculator which
mainly uses CPU, and Notepad which produces some disk
operations. We compare the running time of these programs
between when our modules are running and not2. In the

2When we performed this test, we run a test program 5

9

case of the Internet Explorer, we simply visit one web site
(Yahoo.com) and close. We divide some numbers using Cal-
culator and read/edit/save a file using Notepad.
We send queries of 100 domains, which are randomly se-

lected from SET-2, to whois server, blacklist servers, and
search engines to measure the performance of process repu-
tation analysis module and measure how long they take to
get responses. We run this test 10 times (i.e., in each run,
we send 100 randomly selected queries) and measure the
average time to receive all responses.
Overhead of Human-Process-Network Correlation

Analysis Module: As shown in Table 7, the overhead of
this module is 1.35% at maximum and even 0% (i.e. our
module does not affect other programs at all). In addition,
this module only consumes 1.81 MB of memory. Thus, we
believe that the overhead of this module is nearly ignorable.

Item w/o module with module overhead (%)

Internet Explorer 177 (ms) 179.4 (ms) 1.35%
Notepad 4,206 (ms) 4,218 (ms) 0.29%
Calculator 26 (ms) 26 (ms) 0%

Table 7: Overhead of Human-process-network Cor-
relation Analysis Module.

Overhead of System Exposure Analysis Module:
We expect this module will show relatively high overhead.
Since it has to monitor a lot of system calls which are fre-
quently called by a process, it is very hard to reduce the
overhead of this module.
When we measure the overhead, we observe that it con-

sumes 9.18 MB memory and produces overhead around 6%
at maximum and 1 % at minimum, as presented in Table 8.

Item w/o module with module overhead (%)

Internet Explorer 177 (ms) 185.1 (ms) 4.51%
Notepad 4,206 (ms) 4,463 (ms) 6.12%
Calculator 26 (ms) 26.3 (ms) 1.15%

Table 8: Overhead of System Exposure Analysis
Module.

The overhead seems to be not so high and even very low
in some case. In addition, our module does not need to mon-
itor all processes all the time. The system exposure analysis
module only investigates a process when the process issues
automatic connections to remote sites. In our real-world
test on dataset SET-2, the automatic connections to re-
mote sites happen very rarely, around 10% of all connec-
tion trials. Moreover, since a process is likely to generate
multiple automatic connections (averagely 278 automatic-
connections/process in the case of SET-2), the number of
processes that the module needs to investigate is very small.
Hence, we also consider that the overhead from this module
is low.
Overhead of Process Reputation Module: When

we measure the time to collect information for this mod-
ule, we find that collecting information related to whois and
blacklist takes about 1.335 seconds per sending one query,
and gathering information from search engine takes 0.149
second per sending one query.

times and calculate the average value

The results seem reasonable. However one concern is that
is it scalable when there are many machines in the network
communicating with the Internet? We argue that we do not
send a query for every DNS request, because it is very likely
that this domain (particularly when it is normal, popular, or
frequently visited) is already queried before (either by this
host or any other host in the network) thus we already have
the cached information. To understand whether it is true or
not, we investigate DNS query patterns of a large campus
network, which consists of around 25,000 active unique hosts
during monitoring, as shown in Figure 2. We have captured
all DNS queries produced by the campus network users for a
day. The number of captured DNS queries is around 200,000
and they are targeted to around 50,000 domains. We find
that most DNS queries are targeted to a relatively small
stable set of domains. Among these 50,000 domains, top
10% of them cover more than 70% of all DNS queries and
top 30% cover around 80% of all DNS queries. It is inferable
that process reputation analysis module does not need to
collect information for all DNS queries and the frequency of
information collection might be very low. Thus, even though
the number of hosts in a network can increase, we may not
worry too much about the increased distinct DNS queries.

Figure 2: CDF Plot of Percentage of Queries to
Domains (x-axis denotes each individual domain, y-
axis denotes cumulative distribution of percentage
of queries to a domain)

Overhead of Other Modules: Unlike the previous
modules, the other modules of the network information trad-
ing analysis module, and the correlation analyzer exists in
the other host(s) and they mainly monitor light-weight net-
work traffic or receive results from other modules. Thus they
do not affect the performance of the host/network directly.

5. RELATED WORK
There have been several approaches to detect bots at the

network level. They detect bots mainly based on network
traffic pattern analysis [17] or aggregating network flows [32]
or through network behavior correlation analysis [11, 10, 12].
Our work is different from the above, because we design both
of new network level sensors and host level sensors.

Detecting bots at the host level is also popular due to its
effectiveness. They employ several interesting techniques to
detect bots such as tainting memory and system resources
[4, 28] and examining the system call sequences/graphs [18].
Although they detect malware accurately, they could cause
high overhead on the host. Our work designs several new

10

host level sensors without analyzing all running processes all
the time, but only investigating the process when necessary.
There are also several interesting studies related to detect

bot malware. Liu et al. [21] proposed a host-based approach
of executing malware in a virtual machine to detect bot-like
behaviors or characteristics such as making automatic net-
work connections. EFFORT is a host-network cooperated
approach to protect real-world user machines. In addition,
our approach and major detection features/modules are dif-
ferent. Lanzi et al. [20] proposed an approach of detecting
malware in the host by investigating the access patterns of
the process. Our work differs from it because we use differ-
ent features at host level (e.g., socket creation) and detection
models. Moreover, our work analyzes the process only when
necessary. Zeng et al. [33] also proposed to detect bots com-
bining information from both host and network levels. This
work uses network sensors to trigger host analysis, thus it
suffers from the same limitations of previous network-based
detection approaches. If a bot can evade the network level
monitoring, it evades their detection system. EXPOSURE
system has been proposed to detect malicious DNS based on
several features [1]. Although some domain registration fea-
tures of the Process reputation analysis module are similar to
EXPOSURE, they are only small parts in our engine. Cui et
al. provided an approach to detect malware by monitoring
automatically generated connections [6]. Our work differs
from it in that we consider more factors and issues (such as
foreground, helper process for DNS relaying) and we do not
use whitelisting. Moreover, this is only one module in our
whole detection framework.
In [30], Trestian et al. uses the Google search engine for

network traffic measurement, and our approach of identify-
ing reputation of a process also employs search engines. Our
work differs in its main goal (for security) and detection fea-
tures/models. Also, while they only use IP address for their
query, we use the process and domain name as well.

6. LIMITATIONS AND FUTURE WORK
As we all know that no detection system is perfect. Our

EFFORT system is no exception. For instance, a bot might
decide to (mis)use benign domains (e.g., Google, Flickr) as
a side channel[25, 3] for concealed C&C communication to
evade our process reputation analysis module. However, the
efficiency, bandwidth, or realtimeness of such C&C is likely
restricted compared to regular C&C, which could downgrade
the utility of bots. The bot can also choose not to access
unnecessary system resources to avoid the detection of our
system resource exposure analysis module. However, this
will essentially render the bot less useful or no profit to the
botmaster. The bot can also increase the incoming traffic or
decrease the outgoing traffic in order to evade our network
information trading analysis module. However, the former
(increasing incoming traffic from C&C server) could increase
the exposure (and detection probability) of C&C server to
regular security monitoring tools/IDSes that mostly mon-
itor inbound traffic. And the later (decreasing outbound
traffic) will likely significantly decrease the utility of bots
in performing malicious activities (information theft, spam-
ming or DDoS). To evade our human-process-network corre-
lation analysis module, the bot program should not produce
automatic network connections itself. Instead, it may fork
another process to do so or even consider compromising a
benign program (may have frequent human interactions) to

do so. However, keep in mind that we do not use whitelisting
and furthermore, there will be clear coordination and com-
munication between these processes and they could be cor-
related together in analysis to discovery the process group.
In short, we do acknowledge these limitations but we think
the chance that a bot evades all our modules is very slim
unless they sleep or behave like normal programs (in which
case we still achieve the goal of deterrence because they are
not usable to botmasters then). Although not perfect, we
believe EFFORT raises a higher bar, and this is a timely
effort and a right direction in the malware battle.

Our reputation module mainly assumes that bots will use
DNS to contact their master. However not all bots may use
DNS, some bots use IP address directly. Our reputation
model is easily to be extended to handle IP address as well.

In the future, we will further improve the process reputa-
tion analysis module with more robust features and intelli-
gent context analysis. For instance, we plan to improve the
current context analysis in the case of malware keywords
appearing in the search results.

7. CONCLUSION
In this paper, we study various features at network and

host levels and choose promising features that enable to de-
tect bots both effectively and efficiently, a very challeng-
ing research problem in the domain. We propose a novel
host-network cooperated detection approach with correla-
tive and coordinated analysis and develop a first-of-its-kind
prototype system EFFORT. In our extensive evaluation on
real world data, we show that our system can detect bots
accurately with very low false positive and low overhead.

8. REFERENCES
[1] Leyla Bilge, Engin Kirda, Christopher Kruegel, and

Marco Balduzzi. Exposure: Finding malicious domains
using passive dns analysis. In Proc of NDSS, 2011.

[2] Christopher J.C. Burges. A Tutorial on Support
Vector Machines for Pattern Recognition. In Journals
of the Data Mining and Knowledge Discovery, 1998.

[3] Sam Burnett, Nick Feamster, and Santosh Vempala.
Chipping away at censorship firewalls with
user-generated content. In Proceedings of the 19th
USENIX conference on Security, USENIX Security’10,
2010.

[4] Juan Caballero, Pongsin Poosankam, Christian
Kreibich, and Dawn Song. Dispatcher: Enabling
Active Botnet Infiltration using Automatic Protocol
Reverse-Engineering. In Proceedings of the 16th ACM
Conference on Computer and Communication
Security, November 2009.

[5] Corinna Cortes and V. Vapnik. Support-Vector
Networks. In Journals of the Machine Learning, 1995.

[6] Weidong Cui, Randy H. Katz, and Wai tian Tan.
BINDER: An Extrusion-based Break-In Detector for
Personal Computers. In University of Berkeley
Technical Report No. UCB/CSD-4-1352, 2004.

[7] Detours. Software packaged for detouring win32 and
application apis. http://research.microsoft.com/
en-us/projects/detours/.

[8] EasyHook. Easyhook - the reinvention of windows api
hooking. http://easyhook.codeplex.com/.

11

[9] Tal Garfinkel and Mendel Rosenblum. A virtual
machine introspection based architecture for intrusion
detection. In Proceedings of the 10th Annual Network
and Distributed System Security Symposium, February
2003.

[10] Guofei Gu, Roberto Perdisci, Junjie Zhang, and
Wenke Lee. BotMiner: Clustering Analysis of Network
Traffic for Protocol- and Structure-Independent
Botnet Detection. In Proceedings of the 17th USENIX
Security Symposium (Security’08), July 2008.

[11] Guofei Gu, Phillip Porras, Vinod Yegneswaran,
Martin Fong, and Wenke Lee. BotHunter: Detecting
Malware Infection Through IDS-Driven Dialog
Correlation. In Proceedings of the 16th USENIX
Security Symposium (Security’07), August 2007.

[12] Guofei Gu, Junjie Zhang, and Wenke Lee. BotSniffer:
Detecting Botnet Command and Control Channels in
Network Traffic. In Proceedings of the 15th Annual
Network and Distributed System Security Symposium
(NDSS’08), February 2008.

[13] Ramakrishna Gummadi, Hari Balakrishnan, Petros
Maniatis, and Sylvia Ratnasamy. Not-a-Bot (NAB):
Improving Service Availability in the Face of Botnet
Attacks. In Proceedings of Symposium on Networked
System Design and Implementation (NSDI), April
2009.

[14] Thorsten Holz, Christian Gorecki, and Felix Freiling.
Detection and Mitigation of Fast-Flux Service
Networks. In Proceedings of NDSS Symposium, Feb.
2008.

[15] Nicholas Ianelli and Aaron Hackworth. Botnets as a
Vehicle for Online Crime. In Proceedings of 18th
Annual FIRST Conference, June 2006.

[16] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu.
Stealthy malware detection through vmm-based
out-of-the-box semantic view reconstruction. In
Proceedings of the 14th ACM conference on Computer
and communications security, October 2007.

[17] Anestis Karasaridis, Brian Rexroad, and David
Hoeflin. Wide-scale botnet detection and
characterization. In Proceedings of the first conference
on First Workshop on Hot Topics in Understanding
Botnets, April 2007.

[18] Clemens Kolbitsch, Paolo Milani Comparetti,
Christopher Kruegel, Engin Kirda, Xiaoyong Zhou,
and Xiaofeng Wang. Effective and efficient malware
detection at the end host. In Proceedings of 18th
USENIX Security Symposium, August 2009.

[19] Taku Kudo. Tinysvm: Support vector machines.
http://chasen.org/~taku/software/TinySVM/.

[20] Andrea Lanzi, Davide Balzarotti, Christopher
Kruegel, Mihai Christodorescu, and Engin Kirda.
AccessMiner: using system-centric models for malware
protection. In Proceedings of 17th ACM conference on
Computer and communications security, June 2010.

[21] Lei Liu, Songqing Chen, Guanhua Yan, and Zhao
Zhang. BotTracer: Execution-Based Bot-Like Malware
Detection. In Proceedings of international conference
on Information Security (ISC), 2008.

[22] MalwareDomains. Dns-bh malware domain blacklists.
http:

//www.malwaredomains.com/wordpress/?p=1411.

[23] MicroSoft MSDN. Windows hook functions.
http://msdn.microsoft.com/en-us/library/

ff468842(v=VS.85).aspx.

[24] B. Scholkopf, J.C. Platt, J.Shawe-Taylor, A.J. Smola,
and R.C. Williamson. Estimating the support of a
high-dimensional distribution. In Technical report,
Microsoft Research, MSR-TR-99-87, 1999.

[25] Kapil Singh, Abhinav Srivastava, Jonathon T. Giffin,
and Wenke Lee. Evaluating email’s feasibility for
botnet command and control. In Proceedings of
Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2008), pages
376–385, 2008.

[26] SPAMHAUS. The SPAMHAUS Project.
http://www.spamhaus.org/.

[27] SRI-International. An analysis of Conficker C.
http://mtc.sri.com/Conficker/addendumC/.

[28] Elizabeth Stinson and John C. Mitchell.
Characterizing the Remote Control Behavior of Bots.
In Proceedings of Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA), 2007, July
2007.

[29] Elizabeth Stinson and John C. Mitchell. Towards
systematic evaluation of the evadability of bot/botnet
detection methods. In WOOT’08: Proceedings of the
2nd conference on USENIX Workshop on offensive
technologies, Berkeley, CA, USA, 2008. USENIX
Association.

[30] I. Trestian, S. Ranjan, A. Kuzmanovic, and A. Nucci.
Unconstrained Endpoint Profiling (Googling the
Internet). In Proceedings of ACM SIGCOMM 2008,
Mayt 200.

[31] WinPcap. The industry-standard windows packet
capture library. http://www.winpcap.org/.

[32] T.-F. Yen and M. K. Reiter. Traffic aggregation for
malware detection. In Proceedings of International
Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA2008), July
2008.

[33] Yuanyuan Zeng, Xin Hu, and Kang G. Shin. Detection
of Botnets Using Combined Host- and Network-Level
Information. In Proceedings of Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN 2010), June 2010.

APPENDIX
A. APPENDIX

A.1 SVM Classifier
For the process reputation model, we use a SVM classifier.

Here we briefly talk about the SVM classifier.
To start with the simplest case, we assume that there are

two classes and they can be separated by a linear function.
More formally, given training examples xi and a classifier
yi, if we assume that those two classes are denoted as 1 and
−1 (i.e. yi ∈ {−1, 1}), the training examples which lie on
the hyperplane satisfy the following equation.

w · x+ b = 0, where w is a normal vector and b/||w|| is a
perpendicular distance from the hyperplane to the origin.

From the above equation, we can find the hyperplanes

12

which separate the data with maximal margin by minimizing
||w|| under the constrains of yi(xi ·w+ b)− 1 ≥ 0. To solve
this equation, we will apply a Lagrangian formulation, and
then we will have a primal form - Lp - of the Lagrangian [2].
It is described as the following equations.

Lp ≡ 1

2
||w||2 −

∑
αiyi(xi · w + b) +

∑
αi (1)

, where αi is a Lagrangian multiplier and αi ≥ 0.
Now, we have to minimize Lp with respect w and b, and it

gives us two conditions of w =
∑

αiyixi and
∑

αiyi = 0. In
addition, we can substitute these conditions into Lp, since
they are equality in the dual formulation. Thus, we can
get dual form - Ld - of the Lagrangian like the following
equation.

Ld =
∑

αi −
1

2

∑
αiαjyiyjxi · xj (2)

Finally, we can get our SVM classifier through maximiz-
ing Ld. If we can not separate the data by a linear func-
tion, we have to extend the original set of training examples
xi into a high dimensional feature space with the mapping
function Φ(x). Suppose that training examples xi ∈ Rd

are mapped into the euclidean space H by a mapping func-
tion Φ : Rd → H, we can find a function K such that
K(xi, xj) = Φ(xi) · Φ(xj) (a.k.a. ”kernel function”). We
can replace the inner-product of the mapping function by
the kernel function and solve the problem with similar ap-
proach of the linearly separable case.

A.2 One­Class SVM (OCSVM)
The One-Class SVM (OCSVM) has been proposed to cre-

ate a model with only one side of information [24]. In this
paper, we use OCSVM to build the system resource exposure
model. The OCSVM maps training examples into a feature
space and finds a hyperplane which can best separate train-
ing examples from the origin. For instance, given training
examples xi, if we assume that there are two planes denoted
as “+” and “-” across an origin, the OCSVM will assign all
known examples xi into an one of the planes (i.e. “+” plane
or “-” plane).
Similar to generic multi-class SVM classifier, the OCSVM

needs to find a hyperplane with maximal geometric margin
and it is described as solving the Lagrangian equations of (1)
and (2) in Appendix A.1 (more details about the OCSVM
can be found in [24]). In this model, we will find a hy-
perplane to assign all benign examples (i.e. the Yi features
of the benign processes) into the “+” plane and anomaly
examples into the “-” plane.
The weights for the correlation engine can also be deter-

mined by the OCSVM. To do this, we first collect detection
results of other modules of benign processes and then we
use these results as features for the OCSVM classifier. Sim-
ilar to the above approach, we try to find (a) hyperplane(s)
which map(s) all (or most) benign processes to one plane.

13

