
What is Wrecking Your Data Plan?
A Measurement Study of Mobile Web Overhead

Abner Mendoza
SUCCESS Lab

Texas A&M University
mendoza@cse.tamu.edu

Kapil Singh
IBM Research

kapil@us.ibm.com

Guofei Gu
SUCCESS Lab

Texas A&M University
guofei@cse.tamu.edu

Abstract—The growing popularity of smartphones and contin-
uous user demand for a rich web experience has resulted in an
exponential surge in cellular bandwidth requirements. Cellular
providers have struggled to keep pace with the new requirements
while users often face a monetary cost associated with the data
downloaded to their device. While many modern websites have
adapted to the new mobile habitat, they often take shortcuts to
transition from their desktop to mobile versions, many times car-
rying redundant content that is never utilized. Moreover, mobile
users are effectively paying for certain undesirable content, such
as advertisements, in the form of their bandwidth costs.

In this paper, we study the composition and complexity of
modern websites, from both a mobile and desktop perspective,
to identify sources of wasted bandwidth. We developed a custom
crawler-based framework to perform an in-depth analysis of the
top 100,000 popular sites ranked by Alexa. Our results show
that 23% or more of the content size on an average website
is unnecessary, unused or redundant. Our results serve as a
motivation for developing optimized websites and enhancing the
web infrastructure to better suit the mobile environment with
emphasis on reducing bandwidth costs, while also improving
performance and efficiency.

I. INTRODUCTION

As mobile devices become ubiquitous and smartphones gain
more popularity, the demand for bandwidth on the cellular
infrastructure has risen to unprecedented levels. This surge in
bandwidth demand is largely dominated by HTTP traffic from
mobile browsers and mobile applications [1].

The increasing demand and consumption of higher band-
width causes cellular networks to operate under severe re-
source constraints [2], which often translates into higher costs
for users. This effectively means that the cost of each byte to
the user must be increased in order to alleviate the increased
burden on the cellular infrastructure. From the perspective of
both users and service providers, there is a mutual best interest
in reducing the overall bandwidth consumption.

The goal of this work is to have a deep understanding of
the website components that contribute to useless, unnecessary
bytes to be transmitted over the network and to develop a
large-scale perspective of the amount of useless content that
exist on the Web today. To achieve this goal, we perform a
measurement-driven study to analyze a large set of popular
websites from both a mobile and desktop browser perspective,
to identify development flaws in today’s real web pages that
impose additional and often unnecessary data transfers result-
ing in higher bandwidth surcharge for users and the mobile

infrastructure as a whole. For example, our measurements
show that the average mobile website imposes an average
total of about 923 kilobytes of data on each initial page load,
with an excess of about 221 kilobytes of data consisting of
content either unused or unnecessary for loading the web page.
This represents a 24% overhead of additional bytes that have
an adverse and significant impact to all stakeholders, both in
terms of costs and performance.

While websites have evolved to cater to the mobile platform,
their development has often happened in a piecemeal and ad-
hoc fashion, in effect inheriting considerable amount of legacy
code (such as JavaScript and CSS code) from their desktop
counterparts. Moreover, developers have largely focused on
quick development and rich user experience for mobile sites,
without much consideration of the bandwidth cost for the end
user. As a result, even though bandwidth-saving solutions such
as code compression [3]–[5] are known, we find that they are
not effectively leveraged by a large majority of popular sites. In
this paper, we emphasize on the amplitude of the problem by
showing that even popular websites are culprits for not filtering
unnecessary content, resulting in considerable overhead for the
users and cellular providers.

In our evaluation we crawled the top 100,000 websites as
ranked by Alexa [6], using a custom mobile browser and desk-
top browser. Overall, our findings confirm that mobile websites
are becoming increasingly complex, and there is a huge
need for increased code optimization and localized caching
mechanisms in the face of disappearing unlimited data plans
and popularity of pay-as-you-go plans in several countries. We
believe that different stakeholders, such as the web developers
and advertisers, must take greater responsibility in reducing
the burden on the end users and the cellular infrastructure.
Unfortunately, we found several reputed websites, such as
facebook.com and amazon.com, serving content with
substantial amount of unnecessary overhead at 29% and 38%
respectively.

In summary, this paper makes the following contributions:
• Analysis of multiple sources of unnecessary content over-

head in website designs.
• Large-scale measurement on top 100,000 Alexa-ranked

sites to understand the prevalence of unnecessary web
content on popular sites.

• Provides in-depth analysis of the content overhead on



desktop and mobile websites.

We show that desktop and mobile websites, while different
in total size, are relatively similar in terms of the overhead of
unused content downloaded by the client browser. While the
overhead burden may be more severe on the mobile platform,
the benefits of reducing overhead can apply for all websites,
exclusive of the form factor for which they are targeted.

II. AN ANALYSIS OF UNNECESSARY OVERHEAD SOURCES

First, we present our methodology for identifying unneces-
sary content of a web page and enumerate page resources that
contribute to such overhead.

A. Methodology

For a systematic analysis, we establish the following prin-
ciple to guide our overhead measurements:

A piece of content is considered unnecessary overhead if it
satisfies at least one of the following conditions: (1) it is not
rendered by the browser, or (2) it has no visual or functional
impact on the offerings of the web page, or (3) the content
is not directly related to the page and presents limited to no
value to the user.

We evaluated page resources against the three conditions
and marked them as unnecessary if one of the conditions are
satisfied. The next subsection enumerates the major resource
categories identified as unnecessary by our analysis.

We use content size as the metric for our measurements,
where size is calculated at the user’s browser once the content
is downloaded. A similar approach is taken when deciding how
to optimize websites for performance [7]. Indeed, our work is
related to performance measurement studies, but with several
key differences. Most significantly, we do not consider timing
and latency related measurements due to the nature of our
crawling infrastructure (Section III). Latency measurements
in our context would not truly simulate real user experiences
on cellular networks. Instead, we focus on the content size of
assets transferred over the network and analyze the extent of
the usage by the browser of all downloaded assets. Our goal
is to identify the total added bandwidth consumed by data that
is redundant, often unnecessary, and nonetheless costly to the
user. We use the term bandwidth loosely in this paper to refer
to the data size, but largely ignoring the rate measurement
usually considered in bandwidth measurements.

B. Resources contributing to Unnecessary Overhead

Modern web pages include a rich variety of content types
that include both static data (such as images) and executable
code (such as JavaScript). For our analysis, we focus on six
major components of a website – Images, JavaScript, Fonts,
CSS, HTML and Cookies – since our evaluation shows that,
on average, they make up to 98% of the total size on mobile
websites, and 92% of the total size on desktop websites. We
enumerate various sources of unnecessary content based on
analysis of these major page components.

1) Image Overhead: Images are the major contributors to
the total page size with contributions of approximately 63%
and 64% of the total page weight for desktop and mobile
sites respectively (Section IV). Unfortunately, there is a major
disconnect between the quality of images that websites are
offering and what the end devices can effectively render for
enhanced visual experience for the user. Even though several
image compression techniques exist, they are often not utilized
by web developers and images continue to embed unnecessary
meta-data that is transferred to the browser over the network.

2) Unreachable code in JavaScript and CSS: Development
of many websites is often done in a piecemeal and ad-hoc
fashion with new code modules being added while old ones
are maintained for backward compatibility. Additionally, many
websites leverage the same code base for both desktop and
mobile versions that often results in code that remains included
but never used. Moreover, they include conditional code based
on device type, OS, browser, etc. A piece of code that is
not meant for a particular device or condition would not
be consumed, so it is useless for that particular device or
condition.

Code coverage usually refers to the amount of code that has
been tested prior to deployment and represents the amount of
application code that is reachable. In the context of this study,
we use the term code coverage to describe the amount of code
that is executed by the browser in the process of rendering a
web page. In our measurements, code coverage is analyzed
for CSS code, and for JavaScript code, which in turn enables
us to identify unreachable (and unnecessary) code.

3) “Double-Taxed” Advertising: Advertisements (Ads) are
a special case in the context of identifying overhead in the
Web. Advertisements are an important element of the web
ecosystem, and help to sustain the availability of web services
to users. Publishers rely on advertising revenue to maintain
their websites. However, advertisements also introduces ad-
ditional bytes that must be downloaded for each website,
which effectively represents an additional cost to the end users.
This is double taxing for the users especially in cases where
undesirable ads are forced on them. Additionally, cellular
providers usually have no extra benefit from such advertising,
while advertising inherently places additional pressure on their
infrastructure.

4) Unused Fonts: Many websites use web fonts as a means
to ensure consistent user experience across platforms and
devices. Web fonts are included on a page as an external
font file that is downloaded by the browser. These font files
typically include a large set of possible fonts, or variations of
the same font, even though the site does not consume all of
them.

5) Comments and Whitespaces in HTML, JavaScript and
CSS: Comments and whitespaces are important components
for the web developer to maintain clean and well-understood
code. While they are critical for the development stage, they
have no value for the browser or to the end user, thus satisfying
our first and second overhead condition.



6) Improper Use of Cookies: Modern websites leverage
cookies for maintaining states across multiple requests. By
default, cookies belonging to a website origin are automati-
cally sent with any requests to that origin. Unfortunately, in
many cases the server does not require all the cookies in order
to serve the requested content. For example, if the request is
for a static content such as an image file, session cookies are
not required. Even if the cookie content size is small, the total
data overhead due to cookie can be considerably large if the
number of requests to the origin are high (Section IV-G).

III. MEASUREMENT FRAMEWORK

We utilized a web-centric measurement approach in which
we actively crawled the Web to measure unnecessary con-
tent hosted on popular websites. In order to extract the
true representation of each website close to what would be
seen by a real user, our custom crawler utilized the popular
PhantomJS headless browser [8] to render websites including
all dynamically loaded content. We ran our crawler using
user-agent and viewport settings for both a mobile browser
and a desktop browser, resulting in several million individual
HTTP requests captured. Similar to previous works [9], [10],
we focused our data collection to the landing page of each
website. In addition, we simulated a few user actions to invoke
additional content and functionality that may be hidden behind
the landing pages, especially focusing on code coverage. We
downloaded all assets loaded by each website, along with a
record of all request and response details saved in an HTTP
archive record (HAR) file [11]. Our dataset was accumulated
over a span of several days in April of 2014.

A. Architecture

We built a customized framework used to crawl and capture
all requests and responses, and subsequently analyze the raw
data. A high-level architecture of the framework is shown in
Figure 1. On each successful page load, an HTTP Archive
(HAR) formatted file is saved that includes all the request and
response details for the loaded page. The information within
the HAR file is a comprehensive representation of the required
transactions (request-response pairs) used for downloading the
given page. In addition to the traditional HAR file contents,
we modify our HAR capture code to include additional details,
such as the nested frames and the actual page’s HTML code.
This gives us a better holistic representation of the entire page
in a single file rather than multiple files. For a large-scale
analysis, this facilitates easier parsing and automatic analysis
of page measurements on a per-page basis.

Additionally, for each HTTP GET request, we downloaded
each target file separately to disk. This is necessary because the
PhantomJS browser itself does not provide a means for saving
the downloaded assets. After each web page is processed, or
timed out, we start a new instance of the browser from a clean
state to crawl the next page.

The last major component in the framework is the JSCover
proxy [12], which is a tool that enables us to measure
code coverage for JavaScript. We performed our overhead

Alexa
Site

Listings

Crawler

Page
Archives

HAR
Files

Raw
Files

JSCover Proxy

Coverage
Reports

Internet

Fig. 1. Measurement Framework Architecture: Measurements are calculated
from analysis of HAR files, raw resource files, and coverage report files.

measurement and analysis offline using various data files and
reports collected during the crawling stage.

User Simulation: In order to be more comprehensive in
our measurements, and account for code execution triggered
by user interaction on a website, our crawling framework
analysis included automated user simulation. The automated
user simulation actions includes code that performs scrolling,
mouse events such as clicks and hover, link navigation, and
other actions that may expose page’s characteristics, such
as triggering JavaScript execution. We were able to closely
imitate user interactions and achieve good coverage using
these simple simulations (Section IV-H).

B. Measurement Approach

We analyzed each web page with respect to various metrics
that measures the impact on data usage on desktop and mobile
devices. Some measurements were performed at the time the
web pages were crawled, and saved into the HAR file. For
example, we calculated content length at the time of crawling
since HTTP headers sometimes report incorrect content length
for a given response. This ensured that the HAR file is saved
with the correct content length for each request. We also
measured the content size online across different MIME types
such as Image, JavaScript, CSS, HTML and Fonts. Other
measurements, such as those resulting from code coverage
and image optimization, are done offline after the websites are
crawled. The framework is designed to automatically produce
various sets of result files, as well as the downloaded website
component files that can be analyzed offline.

1) Code Coverage: For JavaScript coverage, we used the
JSCover tool [12] in order to facilitate our measurement
of unused JavaScript code. JSCover modifies the JavaScript
code that is served to the browser with code that records
measurements for code that is executed. JSCover saves the



resulting coverage report to disk, and we are then able to
parse these reports in order to infer and measure the lines of
code not covered. For CSS, we measure the amount of unused
CSS by extracting unused rules and subsequently analyzing
the remaining CSS rules according the general CSS specificity
rules that determine the rules applied by the browser.

2) Images and Fonts: For Images and Web Fonts measure-
ments, we use compression tools that optimize the files by
applying lossless compression. We measure the total overhead
as the amount of file size reduction obtained by using compres-
sion tools to optimize the files while maintaining the fidelity
of the files. For JavaScript, CSS, and HTML, we apply both
compression tools that strips out whitespace and comments,
and we perform dynamic analysis in the form of code coverage
measurements to determine the specific portions of the code
not utilized by the browser.

3) Advertisements: In order to measure advertisements, we
first needed to detect what portion of each website represented
an advertisement. We used the popular filter list used by
browser ad blockers, known as EasyList [13]. Utilizing these
filters, we are able to scan a website loaded in our browser,
and extract the segments that are identified as advertisements
to be able to measure and analyze their size overhead. In this
sense, we treat Ads as an entity all on its own.

C. Crawling Data Set

We crawled the set of 100,000 most popular sites ranked by
Alexa in order to collect a data corpus with enough coverage
of representative websites. We crawled each website using
both a mobile and desktop user-agent string as discussed
previously, resulting in distinct datasets for mobile and for
desktop websites. For each website, we set a connection
timeout of 120 seconds and only captured the final landing
site for any sites that had automatic redirection. In total, we
captured a total of 95,718 websites each for both data sets,
and a total of 12,142,743 individual requests for desktop web-
sites, and 8,042,122 individual requests for mobile websites.
Websites that were not captured included those that have no
landing page, such as those from content delivery networks
and advertising network servers. Additionally, some websites
timed out or were not available at the time we attempted to
crawl them. Overall, our data set represents 95.7% of the total
site listing that we used.

D. Data Variance

One limitation of our study is the temporal invariance of our
data set, which might not fully capture the dynamic nature of
a web page. This is especially true when considering adver-
tisements loaded on a page. On each load of a page, the final
representation varies depending on several factors, including
time, advertisements, HTTP headers, and other parameters.
Website statistics show a steady growth trend in the overall
page sizes over time [10]. Our study, however, is based on a
snapshot in time of these web pages, with a goal of presenting
a view of the general state of mobile and desktop sites.

Images JS Fonts CSS HTML Other Average

Mobile 593.5211 200.8101 34.1069 38.48561 44.58444 11.01984 922.527931 11.01984

Desktop 1086.025 282.2877 56.75407 49.20218 57.46805 209.5467 1741.283974 209.5467

64%

22%

4%
4%

5%

1%
Mobile

Images

JS

Fonts

CSS

HTML

Other

63%
16%

3%

3%

3% 12%

Desktop

Fig. 2. Average object sizes per page page for mobile and desktop websites

IV. EXPERIMENTAL RESULTS

A. Baseline Measurements

Analysis of the total average sizes of major website compo-
nents gives us a general picture of the Web landscape in terms
of website composition and content sizes. These measurements
establish a baseline against which we measure the overhead
percentage for each component.

While the focus of our work is mobile due to its higher
per-byte data cost, the insights from this study can also
equally benefit desktop websites design practices. Therefore,
we compare mobile and desktop measurements to illustrate
the correlation between the two platforms. Our measurements
show that the average size of a mobile website is 923 kilo-
bytes, and the average size of a desktop website is 1741
kilobytes. These measurement as similar to those gathered by
HTTPArchive.org [10].

Previous studies have shown that images make up the
majority of the total page weight on the average website [9],
[14], [15]. This holds true for both mobile and desktop website
as can be seen from Figure 2. We also see the prominence
of JavaScript code in both mobile and desktop sites. Ihm et
al. [16] attributes the increased size of JavaScript and CSS over
the years to the increased use of Ajax functionality on modern
websites. An interesting observation in comparing between
mobile and desktop is that the size of the average JavaScript
code on both platform is almost the same. Our results show
that for desktop websites, JavaScript code accounts for about
283 kilobytes (16%), while on mobile websites we see an
average of about 201 kilobytes (22%) of JavaScript code.
While the prominence of JavaScript is to be expected [16], it
is interesting to note that mobile websites use relatively more
JavaScript code, which could give rise to concerns related to
performance bottlenecks and overhead.

B. Image Analysis

Since images are the majority contributors to the page
weight, their impact on data usage is significant. As can be
observed from Figure 2, images take up about 63% and 64% of
the total page weight for desktop and mobile sites respectively.
We found that entertainment websites use a larger volume
of images on both mobile and desktop websites, and finance
websites have the least average image size. We measure the
impact of applying compression and optimization on images
to reduce the total footprint while maintaining quality. Despite



best practice recommendations, our analysis shows that images
are rarely optimized by most websites.

Image types also play a considerable role in the overall
image size. We found that three formats – GIF, PNG, JPG –
tend to be the most popular, with average total size measure-
ment (of all images) for each format per page being 97, 222
and 646 kilobytes for desktops and 42, 159 and 387 kilobytes
for mobile. There is a negligible amount of images which we
ignore that utilize other formats such as BMP, TIFF, etc. Each
of the three major image formats utilize different compression
techniques in order to optimize their size and quality and hence
could be suitable for different target devices.

1) Overhead in Image Content: Web images are usually
created using graphics tools that most likely do not save
the final images in the most efficient manner. For example,
many graphics tools include metadata information such as the
tool name, author’s name, etc. These snippets of extraneous
information add to the total image size while having no
effect on the actual image representation. Additionally, varying
graphics tools may not use the most optimized algorithms
to save the final image on disk, resulting in images that are
not fully optimized. For example, PNG optimization usually
requires selection of the best neighboring pixel depending on
the actual image, but graphics tools may not fully implement
such optimizations.

In terms of reducing bytes, one intuition is that converting
GIF images to 8-bit PNG can result in reduced image sizes
while still preserving quality, due to the optimized algorithm
used for PNG images. We performed an analysis on all GIF
images to get an idea of how much size savings could be
realized by simply converting GIF images to PNG images.
We used the OptiPNG image compression tool [17] to convert
GIF images to PNG, and compared the size difference. We
performed this analysis for a sampling of both mobile website
images and desktop website images. On a straight conversion
to PNG from GIF, we saw an average of 13% file size
reduction. This represents a potential saving of about 13
kilobytes on desktop pages, and 5.5 kilobytes on mobile sites.

Next, we ran the compression tool on a sampling of existing
PNG images and found a significant reduction in file sizes at
about 31% on average. This applied equally for both mobile
and desktop web images. The results show that a potential
reduction of 69 kilobytes and 49 kilobytes can be realized on
an average desktop and average mobile page, respectively, by
simply performing PNG image optimization.

We performed a similar analysis on JPG images to compare
the size reduction that can be realized by applying image
optimization. The results on optimized JPG images show that
a file size reduction of about 15% on average can be realized.
Considering our average JPG content sizes per page, we can
potentially reduce the size by an average of 97 kilobytes for
desktop sites, and 58 kilobytes for mobile sites. These are
significant savings on the total page weight that can be realized
by simple image optimization.

2) Screen Quality Analysis: Mobile devices differ signif-
icantly in their screen quality. We use pixel density as a

measure of the screen quality of the device and perform a
preliminary evaluation of the available image quality compared
to the screen quality. Our hypothesis is that a large number
of high-quality images are served to mobile devices unnec-
essarily, resulting in wasted resources if the device cannot
display the full quality of the image, or if the high-quality
is not discernible from a lower-quality image on the same
display.

Considering image dimensions compared to popular screen
resolutions, we found that most images on a desktop website
fit within the 1024x768 screen resolution. That is, we found
that less than 1% of the images had a dimension that exceeded
the 1024-pixel width. However, on mobile sites we found that
a significant number of images exceeded the most popular
640x960 screen resolution. Specifically, we measured the
width of all images on mobile websites and found that out of
a total of 3.5 million images that were downloaded, 732,023
images (20.7%) had dimensions that exceeded the popular
640-pixel width for mobile displays. We further analyzed the
reduction in file sizes of these identified images when the
resolution was reduced to a minimum of 640 pixels while till
maintaining the aspect ratio. This image resizing reduced the
size of these images from an average 32.6 kilobytes to 23.2
kilobytes, i.e., an overall reduction of 28.8%. While there are a
large number of varying display dimensions and resolutions in
the mobile space, we present this simple analysis to illustrate
the need for more targeted image-resolution management. For
example, 320x480 display resolutions are still common place
for mobile phones, which present an opportunity for further
reduction of image file sizes.

Summary Our image overhead analysis showed that image
optimization is lacking on most websites. From our average
size measurements, we observe that a total of saving of
about 263 kilobytes can be realized on desktop sites, and
121 kilobytes for mobile websites. These are significant size
reductions that alone can reduce mobile website sizes by an
average of 13.1%, and desktop website sizes by an average
of 15.1%. The size reduction can be further enhanced if the
image quality is appropriately optimized for the target screen
quality.

C. Analysis of Code Usage

1) JavaScript Coverage: Based on our code coverage anal-
ysis, we found that up to 33% of JavaScript code remains
unused on mobile web pages (Figure 3). This represents an
average of 67 kilobytes for mobile web pages. On desktop
pages, we found a higher average size of unused JavaScript
code, at 82 kilobytes, which represents about 28% of the total
JavaScript weight on desktop pages.

What contributes to unused code? From our analysis,
we noted that in many instances unused code is attributed
to blocks of code from JavaScript framework libraries. In
our mobile dataset, we found that 58% of sites made use of
some form of the jQuery framework. For example, a number
of mobile sites use the jQueryMobile library, which includes
pre-built functionality for a number of user interface layouts,



33% 28%

0

100

200

300

400

Mobile Desktop

K
ilo

b
yt

es

Total JS Unused JS

Fig. 3. JavaScript coverage results showing size of unused JavaScript code
with user simulation

TABLE I
JAVASCRIPT LIBRARY INCLUSION OVER ALL SITES

Framework Sites
jQuery 58%

Prototype 1%
Angular 1%

Scriptaculous 0.25%
Dojo 0.19%

events, animations, and other pre-built utilities. Of the average
67 kilobytes of unused JavaScript code, we found that around
75%, or roughly 50 kilobytes, can be attributed to the inclusion
of JavaScript framework libraries.

The top 5 libraries we identified are shown in table I.
Overall, we found that 60% of the total sites made use of
one or more of these frameworks.

2) CSS Usage: CSS files account for an average of 38
kilobytes on mobile websites and 51 kilobytes on desktop web-
sites. While CSS accounts for the least bytes in comparison
with the other major components, there are still opportunities
to identify redundant data. CSS in particular is notorious for
being bloated with unused CSS rules. In terms of website
performance, it is particularly important to reduce the size,
and therefore the latency, of CSS files. The reason is that
browsers typically do not begin to render a page until it has
downloaded the CSS files and parsed all the rules. There are
two main methods of reducing the size of CSS files. First, the
CSS files can be compressed similar to JS files by using tools
that strip out all comments, and whitespace. In our analysis we
found that desktop CSS files achieve the most size reduction
by simple compression at an average of 4 kilobytes. For mobile
websites, we found the average reduction in size to be close
to 1 kilobyte. One possible reason for this is that mobile
website developers tend to use optimization techniques more
extensively for performance reasons.

The second method of size reduction for CSS is through
analysis of CSS specificity rules to determine the unused CSS
rules. We performed an extensive analysis on CSS files through
our instrumented browser to identify the unused CSS rules. On
desktop sites, we found that an average of 78% of the total
rules were not used by the websites. On mobile sites, we found
that the average was 71% of the rules not used. Measuring
the size of the unused rules we found that CSS files can be
reduced to an average of 24 kilobytes on mobile websites,
and 30 kilobytes for desktop sites. This is a significant size

reduction, representing 38% reduction for mobile sites, and
41% reduction for desktop sites.

Summary With regard to the total overhead for unused code
(JavaScript and CSS), our results show that a total savings of
85 kilobytes (9.2%) can be achieved on mobile websites, and
a total savings of 104 kilobytes (6%) can be achieved for
desktop sites.

D. Advertisements

We also quantify the contribution of Ad-related content to
the total weight of a page rendered in a browser. In order to
identify Ads, we used the same mechanisms used by browser
extensions to block advertisements. These include regular
expressions and other filtering mechanisms that allows us to
extract Ads from within a page and measure the total size
of all its components. Overall, we found that advertisements
account for about 10% of the total page weight.

We found that ads consume an average of 75 kilobytes
(8.1%) on mobile web pages, and 153 kilobytes (8.8%) on
desktop pages. While these numbers represent a measurement
based on a snapshot in time of each website, they nonetheless
give us a broad picture of the Ad landscape in terms of how
much of the page content may be reserved for Ads. While
we do not advocate that advertisement are unnecessary, it is
also important to consider the additional cost to the user for
downloading advertisements when such downloads are not the
main purpose of visiting a given website. For example, on
mobile devices, advertisements contribute about 19 of the total
201 kilobytes of JavaScript code. This represents a significant
9% of the total JavaScript downloaded, which increases the
load on the JavaScript engine and also contributes to degraded
battery life [18]. If we consider the additive effects of browsing
several pages, we can start to understand the adverse effects
of ads from the user’s perspective both in terms of data usage
and energy consumption.

E. Web Fonts

Recent trends point to increasing adoption of web fonts
across the web. Google, for example, provides a web service
that serves free open source web fonts and reports several
million font downloads across different font families. Web
fonts consist of external font files downloaded by the browser
and utilized on a website through CSS rules. In our dataset,
we found that 31% of the websites downloaded at least one
font file. In total, our mobile dataset contained 86,221 font
files, and our desktop dataset contained 137,799 font files.
The average size of all font files per site was 57 kilobytes on
desktop sites, and 34 kilobytes on mobile sites.

We found that over half of all font files are not utilized by
the browser in rendering the landing page, meaning that they
present significant overhead in terms of page size.

We further analyzed the font files to determine possible
optimizations that could be applied in order to reduce the total
file sizes. We used the open source sfntly library from Google
to apply compression to our font files. After optimization using
the sfntly tool, font file were reduced by an average of 23



kilobytes (40.3%) for desktop sites, and 10 kilobytes (29.4%)
for mobile sites. These represent significant overhead in terms
of data usage.

F. HTML

While HTML code does not contribute as much to the page
size as other components, there are still opportunities for op-
timization. Our analysis of HTML is limited to measuring the
unused portions of HTML code, such as those not displayed
due to CSS rules, or those tags that were empty or included
no content even after user simulation actions.

In analyzing HTML code, we found that the average mobile
site contained 44 kilobytes of HTML code, while the average
desktop site contains a slightly larger 57 kilobytes. We found
that on mobile sites, just about 4 kilobytes of HTML was
unnecessary, either because they were hidden by CSS rules,
or they were empty tags, such as empty div tags. On desktop
sites, we found a higher size of unused HTML code at 11
kilobytes.

G. Additional Extraneous Data

1) Comments and Whitespace: In our analysis, we also
measured the size of comments and whitespaces to determine
their corresponding overhead. For comments, we measured all
instances in JavaScript files, CSS, and HTML. For whites-
paces, we measured all whitespace in JavaScript and CSS,
as well as all whitespaces between tags in HTML code.
We measured an average of 1.8 kilobytes of comments and
whitespaces on desktop sites, and 0.78 kilobytes of comments
for mobile sites. While not significant to the overall page size,
comments and whitespaces contribute enough unnecessary
bytes to have an adverse effect on the data consumption for
end users.

2) Cookies: Similarly, we found that cookies can also
negatively impact data consumption. In our measurements,
we found that average cookie data usage measured per web
page was 1.2 kilobytes for an average mobile website, and 15
kilobytes for an average desktop site. Our measurement shows
that cookies are used much more extensively on desktop sites.
This may be due to the added number of ad-related content
on desktop sites as opposed to mobile sites. Cookies are most
often used as a means of identifying users and building profiles
for advertising and other purposes, and have been the subject
of several privacy-related studies over the years [19] [20].

Since cookies are sent on each request to the same origin,
a single byte of cookie originating from a given server can
account for several bytes of data usage during page rendering.
For example, in an extreme case of a desktop webpage,
we measured a total of 360 requests on lolnexus.com,
which is a site for video game related content. The site
contains a number of ads and social networking widgets, which
contribute significantly to the number of cookies loaded. In
total, we measured 396 kilobytes of cookie data sent in request
headers, and 290 kilobytes of cookie data received in response
headers, for a total of 686 kilobytes of total data usage. This
website does not have a mobile-optimized website, which

0 20 40 60 80 100

Mobile

Desktop

Size of unused JS (kilobytes)

Automatic Manual

Fig. 4. Comparison of user-driven analysis vs. automatic simulation for 100
Alexa sites.

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000
0

0.2

0.4

0.6

0.8

1

Site Ranking

C
D

F

 

 

JavaScript
Images
CSS

Fig. 5. CDF of total overhead measurement by site popularity ranking for
JavaScript, CSS, and images on mobile sites

means that a user on a mobile device would download the
same amount of data just from cookies. On manual inspection
of the cookie values for this particular site, we found that the
vast majority were tracking cookies related to advertisements
and social networking widgets. This extreme case illustrates
the potential total data overhead imposed by ads and other
third party content loaded on a website.

H. Methodology validation using user-driven analysis

In order to validate the automated simulations as being
almost as effective as real user actions, we conducted a user-
driven examination of 100 randomly chosen Alexa websites.
To do this, one of the authors manually browsed and interacted
with these sites using a browser proxied through the JSCover
proxy. This was repeated for each website using both a mobile
and desktop user-agent string, each time using a new private
browser session to eliminate the influence of caching.

We then compared the results obtained through this manual
analysis to those obtained using automated simulation for the
same websites. Figure 4 shows the results of our comparison
for the representative case of JavaScript coverage analysis.
We observe that the JavaScript coverage results are almost
comparable for both desktop and mobile, providing confidence
that our automated simulation works well in practice.

I. Measurements Insights

The aggregated measurement results show that websites
carry a significant overhead of redundant data. The aver-
age overhead measurements for each of the major website
components are shown in Table II. Not surprisingly, images
and JavaScript carry the most overhead of all components,
contributing a total of 19.8% overhead for desktop websites,



TABLE II
TOTAL OVERHEAD MEASUREMENTS RELATIVE TO TOTAL PAGE WEIGHT

OF 923 KB FOR MOBILE AND 1741 KB FOR DESKTOP

Component Mobile Desktop
Absolute Percentage Absolute Percentage

Images 121 kb 13.1 % 263 kb 15.1 %
JavaScript 67 kb 7.3 % 82 kb 4.7 %
Fonts 10 kb 1.1 % 23 kb 1.3 %
CSS 18 kb 2.0 % 22 kb 1.3 %
HTML 4 kb 0.4 % 11 kb 0.6 %
Other 1 kb 0.1 % 2 kb 0.1 %

TOTAL 221 kb 24 % 403 kb 23.1 %

24% 16%
23% 10% 17% 12%

12% 12% 6% 8%

0

500

1000

1500

2000

2500

3000

K
ilo

b
yt

es

Average Size Average Overhead

Fig. 6. Total overhead for mobile websites for top 10 categories

and 20.4% overhead for mobile websites. Overall, our results
show that on an average websites suffer from a substantial
overhead of more than 23%, thus motivating the urgent need
to employ data optimization techniques.

1) Correlating overhead and site popularity: We consider
how the popularity of sites correlates with the total overhead.
The cost of overhead is higher for the cellular networks if
higher ranked sites exhibit such overhead, as more people
would visit them and download unnecessary content. Figure 5
shows a CDF of the overhead for JavaScript, CSS and images
on mobile sites according to the sites’ ranking. Interestingly,
the site ranking seem to have little bearing on the overhead
measurement, meaning that both higher and lower ranked
sites have almost equal tendency to exhibit similar overhead
measurements.

We also examined the overhead numbers for specific pop-
ular representative sites. Not surprisingly, we found that even
highly-reputed websites are more-or-less equal culprits in
serving web content with substantial overhead. While sites like
ebay.com and google.com have overheads lower than our
average measurements at 11% and 18% respectively, other
popular ones such as facebook.com and amazon.com
exhibit much higher numbers at 29% and 38% respectively.

2) Correlating overhead and site category: We analyzed
the total overhead measurements across different website
categories for the top 10 categories as shown in Figure 6.
While there is not a clear relationship between site category
and overhead, we observe that categories which are known to
contain more images, such as Entertainment, carry a higher

overhead.

V. RELATED WORK

Several previous studies have been done to characterize
websites, both at the network level [14], [16] and the client
level [9]. Most previous work focus on measuring the per-
formance of web pages in terms of latency rather than data
usage based on the downloaded content sizes. Our focus is to
measure overhead from the client-side perspective.

Qian et al. [14] considers several strategies, including
packet-level redundancy elimination as a means of reducing
cellular traffic. Our work is focused on eliminating unneces-
sary content, as defined in Section II-A, in terms of what is
necessary for the functionality of a web application, which in
turn also serves to reduce redundancy at the network level to
some extent.

Butkiewicz et al. [9] measured the complexity of web pages
by characterizing the different components of web pages and
measuring the performance impact based on latency metrics.
Their measurements are based solely on desktop websites, and
evaluated on a smaller number of sites. Industry initiatives
such as the HTTP Archive project [10] is similar to our
work in measuring and analyzing the size of different website
components. Our work differentiates from these in that we
make comparisons with mobile and desktop sites, and we
also present a deeper analysis of each website’s composition
in terms of code coverage for JavaScript, CSS, advertise-
ments, and other metrics not previously analyzed. Khan et
al. [21] measured advertisement traffic associated with mobile
applications and proposed a solution to mitigate the costs to
consumers.

Longitudinal studies have previously characterized the dy-
namic nature of the web over extended periods of time [22]
[15]. Ihm et al. [16] investigated the changing nature of web
traffic over a span of five years, showing that Ajax and Flash
traffic have steadily increased. We take these findings into
account, especially with regard to traffic generated by client-
side interactions, by simulating user interactions.

[16] also showed that loading times of web pages improved
due to enhanced caching mechanisms and increased concurrent
connections initiated by modern browsers. Our results show
that although caching has improved over time, there is still
limited cache capacity, and there is no value gained by caching
extraneous data.

Thiagarajan et al. [18] presented an analysis of mobile
phone battery consumption as a result of web browsing. They
proposed optimizations similar to our work. Our results further
highlights the urgent need for more aggressive optimization
practices to increase mobile device energy efficiency, among
other concerns.

Our work is motivated by the insight of previous work
as we seek to fill the gap into understanding the overhead
imposed by unoptimized code and data. Our evaluation of
mobile websites and comparisons to their mobile counterparts
extends the insight of the changing nature of the web landscape
and the need for optimization on mobile and desktop sites.



VI. DISCUSSION & FUTURE WORK

Our insight on the overhead imposed by websites are a clear
indication that there is a dire need for more robust solutions
aimed at web front-end optimization. It has long been known
that the browser presents a significant bottleneck in terms of
page load time and performance [7]. However, previous work
in performance optimization is often at odds with the best
interest of material cost of moving data across the network.
For example, solutions such as SPDY [23], and HTTP2 [24]
place an emphasis reducing latency by minimizing the number
of HTTP requests, among other things. This often leads
developers to concatenate several code files into one file,
thereby reducing the number of HTTP requests, but without
further consideration of any overhead in the code. Our results
show that most of the included JavaScript functionality and
CSS rules within these frameworks are never used by the web
page and thus present a significant overhead both in terms of
performance and data usage.

In the Apache web server, for example, the mod concat
module is used to concatenate files dynamically at run-time.
From a purely performance viewpoint, this practice improves
latency, page load time, and ultimately improves the user
experience. On the other hand, we argue that this practice
has a real cost to users who are inevitably forced to download
a larger set of files, in terms of content size, while a large
percentage of that downloaded content is actually left unused.

While some optimization tools, such as text and image
compression tools, are available today, our results indicate
that such tools are not being used often. There is a need
for an comprehensive, automated solution that would optimize
websites without solely relying on the websites. The insights
gained from our measurement study could be leveraged while
developing such a system. We plan to continue our work in
this direction. We have developed a preliminary blueprint of
such a solution that leverages a suite of optimization tools
to automatically customize the best possible version of a
website for the device and server conditions without sacrificing
functionality or user experience. We are evaluating the suitable
form (such as an adaptive, in-network cache) and location in
the network path (such as at the ISP or the web hosting server)
where such a system would be most effective. We believe that
our proposed solution would complement previous works on
web content adaptation: while most of the existing solutions
focus on content transformation to adapt to the user agent
properties such as display size and resolution, the primary
contribution of our solution is to remove unused and redundant
data that is unnecessary for the functionality of the website.

VII. CONCLUSION

In this study, we presented an analysis of the top 100,000
websites as ranked by Alexa, using a simulated mobile browser
and desktop browser. We built a framework to perform an
extensive analysis of the file sizes and overhead of the various
website components. We compared and contrasted the differ-
ences in content sizes between mobile and desktop websites
at a very granular level. For each website, we measured the

size of assets downloaded to the browser and analyzed the size
reduction that could be realized through various optimization
tools and techniques without affecting the functionality of
the site. Our analysis show that mobile websites impose an
average of 221 kilobytes of data to the end user’s browser,
while desktop websites impose up to 403 kilobytes of data. We
performed various optimization techniques and used various
tools to measure the added overhead of the different compo-
nents. We built a framework using these tools and techniques,
which can effectively reduced a website’s total size by a
minimum of about 23% without compromising usability or
functionality. We showed that there is a dire need for such
optimization on the current web landscape, especially in the
mobile space where data usage come at a premium for both
end users and network operators.

REFERENCES

[1] F. Qian, K. S. Quah, J. Huang, J. Erman, A. Gerber, Z. Mao, S. Sen,
and O. Spatscheck, “Web caching on smartphones: ideal vs. reality,” in
MobiSys, Lake District, UK, 2012.

[2] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
“Characterizing radio resource allocation for 3g networks,” in IMC,
Melbourne, Australia, 2010.

[3] “ShrinkSafe,” http://shrinksafe.dojotoolkit.org/.
[4] D. Crockford, “JSMin,” http://crockford.com/javascript/jsmin.
[5] “Yui compressor,” http://yui.github.io/yuicompressor/.
[6] “Alexa,” http://www.alexa.com/.
[7] S. Souders, “High-performance web sites,” Communications of the ACM,

vol. 51, no. 12, pp. 36–41, 2008.
[8] “PhantomJS,” http://phantomjs.org/.
[9] M. Butkiewicz, H. V. Madhyastha, and V. Sekar, “Understanding website

complexity: Measurements, metrics, and implications,” in IMC, Berlin,
Germany, 2011.

[10] HttpArchive.org, “HTTPArchive,” https://www.httparchive.org/.
[11] “HTTP Archive Format,” https://dvcs.w3.org/hg/webperf/raw-file/tip/

specs/HAR/Overview.html.
[12] “JSCover - JavaScript code coverage tool,” http://tntim96.github.io/

JSCover/.
[13] Ad Block, “EasyList,” https://easylist.adblockplus.org/en/.
[14] F. Qian, J. Huang, J. Erman, Z. M. Mao, S. Sen, and O. Spatscheck,

“How to reduce smartphone traffic volume by 30 percent?” in PAM,
Hong Kong, 2013.

[15] R. Pries, Z. Magyari, and P. Tran-Gia, “An http web traffic model based
on the top one million visited web pages,” in Next Generation Internet
(NGI), 2012 8th EURO-NGI Conference on. IEEE, 2012, pp. 133–139.

[16] S. Ihm and V. S. Pai, “Towards understanding modern web traffic,” in
IMC, Berlin, Germany, 2011.

[17] “OptiPNG: Advanced Image Optimizer tool,” http://optipng.sourceforge.
net/.

[18] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P. Singh,
“Who killed my battery?: Analyzing mobile browser energy consump-
tion,” in WWW, Lyon, France, 2012.

[19] B. Krishnamurthy and C. Wills, “Privacy diffusion on the web: a
longitudinal perspective,” in WWW, Madrid, Spain, 2009.

[20] N. Vallina-Rodriguez, J. Shah, A. Finamore, Y. Grunenberger, K. Pa-
pagiannaki, H. Haddadi, and J. Crowcroft, “Breaking for commercials:
characterizing mobile advertising,” in IMC, Boston, USA, 2012.

[21] A. J. Khan, V. Subbaraju, A. Misra, and S. Seshan, “Mitigating the
true cost of advertisement-supported free mobile applications,” in Pro-
ceedings of the Twelfth Workshop on Mobile Computing Systems &
Applications. ACM, 2012, p. 1.

[22] T. Callahan, M. Allman, and V. Paxson, “A longitudinal view of http
traffic,” in PAM, 2010.

[23] J. Erman, V. Gopalakrishnan, R. Jana, and K. Ramakrishnan, “Towards
a spdy’ier mobile web?” in CoNEXT, Nice, France, 2013.

[24] “HTTP/2,” http://http2.github.io.


