
Study and Mitigation of Origin Stripping
Vulnerabilities in Hybrid-postMessage Enabled

Mobile Applications
Guangliang Yang, Jeff Huang, Guofei Gu, and Abner Mendoza

Texas A&M University
{ygl, jeffhuang, guofei, abmendoza}@tamu.edu

Abstract—postMessage is popular in HTML5 based web apps
to allow the communication between different origins. With the
increasing popularity of the embedded browser (i.e., WebView) in
mobile apps (i.e., hybrid apps), postMessage has found utility in
these apps. However, different from web apps, hybrid apps have a
unique requirement that their native code (e.g., Java for Android)
also needs to exchange messages with web code loaded in Web-
View. To bridge the gap, developers typically extend postMessage
by treating the native context as a new frame, and allowing
the communication between the new frame and the web frames.
We term such extended postMessage “hybrid postMessage” in
this paper. We find that hybrid postMessage introduces new
critical security flaws: all origin information of a message is
not respected or even lost during the message delivery in hybrid
postMessage. If adversaries inject malicious code into WebView,
the malicious code may leverage the flaws to passively monitor
messages that may contain sensitive information, or actively send
messages to arbitrary message receivers and access their internal
functionalities and data. We term the novel security issue caused
by hybrid postMessage “Origin Stripping Vulnerability” (OSV).

In this paper, our contributions are fourfold. First, we con-
duct the first systematic study on OSV. Second, we propose a
lightweight detection tool against OSV, called OSV-Hunter. Third,
we evaluate OSV-Hunter using a set of popular apps. We found
that 74 apps implemented hybrid postMessage, and all these apps
suffered from OSV, which might be exploited by adversaries
to perform remote real-time microphone monitoring, data race,
internal data manipulation, denial of service (DoS) attacks and
so on. Several popular development frameworks, libraries (such
as the Facebook React Native framework, and the Google cloud
print library) and apps (such as Adobe Reader and WPS office)
are impacted. Lastly, to mitigate OSV from the root, we design
and implement three new postMessage APIs, called OSV-Free.
Our evaluation shows that OSV-Free is secure and fast, and it
is generic and resilient to the notorious Android fragmentation
problem. We also demonstrate that OSV-Free is easy to use,
by applying OSV-Free to harden the complex “Facebook React
Native” framework. OSV-Free is open source, and its source code
and more implementation and evaluation details are available
online.

I. INTRODUCTION

Cross-origin communication using the HTML5 postMessage
facility [1] has been a popular and often necessary technique
on the web platform. It relaxes the restrictions enforced by the
well-known same origin policy (SOP) security model [2] by
allowing bidirectional messaging between mutually distrusting
web frames or windows. With the increasing amalgamation of
the web and mobile platforms, postMessage has also found

������

�����	�
���	��

���������	
����



������


��


�����
��


��


�����
��

�������

�	
���

���

���	��
�����


�����

�	
���

���
����������	
���
�

��	����

Figure 1: Overview of regular and hybrid postMessage

utility on the mobile platform, as exhibited by the popularity
of the embedded browser (i.e., WebView) in mobile apps (i.e.,
hybrid apps) [3].

In addition to cross-origin communication, the hybrid mobile
app model introduces the necessity for cross-platform commu-
nication between the web platform and the mobile platform.
Not only do hybrid apps need to communicate between
different origins loaded in a WebView, they must also facilitate
communication between those origins and the native layer (e.g.,
the Android Java code). While hybrid apps can already utilize
web-mobile bridges (such as the JavaScript Bridge) [4] for
cross-platform execution, cross-platform messaging in the form
of HTML5 postMessage is not available.

Android 6.0 partially addresses this shortcoming by pro-
viding a new cross-platform API called postWebMessage().
However, this API is plagued by the notorious Android
fragmentation problem [5] and does not scale well. Moreover,
it is limited to unidirectional communication from native to
web but does not support communication from web to native.
In our empirical study on a set of popular hybrid apps, we
found postWebMessage() was rarely used in practice.

As a result, developers have resorted to customizing postMes-
sage in hybrid apps using ad-hoc methods such as web-mobile
bridges (see Figure 1). In general, this customization treats
the native context as a new different-origin frame. This results
in “hybrid postMessage”, which provides both native-to-web
(N→W ) and web-to-native (W→N) messaging.
Security Issue. Unfortunately, while hybrid postMessage
provides easy and convenient cross-platform communication, it



��������

���

����������	�
���
��������� 	
����� ���

���

��������

���	��
���

����� ����������	�
���
���������

������	
����
��������	� �����������
��������	�

����

�
�����

�����������

�������

������

��������������

�	
��
�����	�
���
����������

��������

���	��
���

��������������

�	
��
�����	�
���
����������

Figure 2: Sending Messages Through Regular And Hybrid postMessage

���������	
�����
�����
������� ����������	
 ���

���������	�
��
�������

��� ��
���

������	


���

��������	���
���
���������

��������

���	��
���

������������
��
�������

���������������

��	
�	
��	���
���
����������
��������

���	��
���

���������������

��	
�	
���	
�����
�����
��������

�	��

�������

�����������

�������

Figure 3: Receiving Messages Through Regular And Hybrid postMessage

also opens a door for adversaries through code injection attacks
(such as web or network attacks shown in Figure 1) to launch
denial-of-service (DoS) attacks, steal sensitive information,
silently access local hardware (such as the microphone), and
perform other nefarious actions. The security problem is rooted
in the loss of the origin information when messages move
across the web and native layers. More specifically, the origin
information of the message sender (source) and message
receiver (target) is either not respected or totally lost. There
are two main reasons: 1) Hybrid postMessage may not provide
any interface to allow the message sender to specify the target
origin, which is critical in the regular HTML5 postMessage
to control the message receiver; 2) Hybrid postMessage may
not provide the source origin of a received message, which
means it is impossible for the message receiver to validate the
message. This adds a new layer to the known security problem
of client-side validation (CSV) in the web platform [6] [7] [8].
For convenience, we term the novel security issue caused by
hybrid postMessage “Origin Stripping Vulnerability” (OSV).

Figures 2-3 illustrate that OSV may compromise the con-
fidentiality and integrity of cross-platform communication.
Consider that adversaries inject malicious code into WebView
through web or network attacks. The malicious code may
leverage hybrid postMessage to passively receive and monitor
messages that contain sensitive information, or actively send
messages to arbitrary message receivers to access their internal
functionalities or data.

In Figure 2-a, Alice sends a message to Bob through the
regular postMessage. The message contains the message content
("How are you doing?"), and the target origin (Bob), which
determines that only Bob can receive the message. However,
hybrid postMessage breaks this convention by stripping the
target origin (Figure 2-b). As a result, Mallory, an adversary
who runs malicious code in another web frame can receive and
read the message. If the message carries sensitive information,
Mallory can easily violate the confidentiality of Alice and Bob’s
communication. In Figure 3-a, Bob is receiving a message

from Alice. When the message arrives, Bob can validate that
the source origin of the message is Alice. However, hybrid
postMessage loses the source origin information (Figure 3-
b), which means that it is impossible for Bob to conduct
validation. Therefore, Mallory may send a message ("What’s
your password?") to Bob and access its confidential data.

The Root Cause of OSV. Although the detailed imple-
mentation guideline and security model for postMessage are
established in HTML5 [1], it is challenging for developers to
implement hybrid postMessage conforming to it. The main
obstacle is the gap between the web and native platforms. Web-
mobile bridges may be applied to fill the gap. However, as
shown in prior work [4] [9] [10], these bridges are often the
cause of security vulnerabilities, because any code loaded in
WebView may freely access them.

For example, we found hybrid postMessage was implemented
in the popular “Facebook React Native” framework using
the JavaScript Bridge. As shown in Listing 1, the crucial
JavaScript method window.postMessage() is rewritten to allow
all messages to be sent to the native frame. However, due
to the intrinsic weakness of the JavaScript Bridge, the native
frame cannot distinguish the identity of the message senders,
or even safely obtain the source origin.

1 WebView.loadUrl("javascript:"
2 "window.originalPostMessage = window.postMessage," +
3 "window.postMessage = function(data) {" +
4 // The source origin is lost.
5 // Only data is transferred through a JavaScript

Bridge.
6 "__REACT_WEB_VIEW_BRIDGE.postMessage(String(data)

);" +
7 "}")

Listing 1: Implementing W→N In Facebook React Native

State-Of-The-Art WebView Defense Solutions. Existing
defense solutions, such as NoFrak [4], Draco [9], MobileIFC
[11], WIREframe [12], and HybridGuard [13], were designed
to provide protection for WebView and web-mobile bridges
by either extending SOP to the native layer, or enforcing
security policies to offer access control. However, they are
circumscribed to prevent OSV for several reasons. First, most



���������	


����


�����	


����

����	


����

�������

��	
��		���

�
����

��	
��		���

���������	 
����	�

Figure 4: Communication Among Three Frames

existing defense solutions can only protect W→N, but not
N→W . Only WIREframe can offer protection in two directions.
However, unfortunately, its security policies enforced in N→W
may be under the control of adversaries. Second, existing
defense solutions are coarse-grained, and may have high false
negatives. Their provided protection is usually performed based
on the origins of web frames, and thus it is difficult for them
to limit the behaviors of the embedded JavaScript code.

Moreover, existing defense solutions may be hindered by the
blend of OSV and CSV vulnerabilities. Consider a scenario in
Figure 4 which we found in a real-world advertisement library.
In the web platform, a nested third-party iframe can send
messages to the main frame, where a message handler receives
the messages but does not validate their source origins (i.e.,
CSV vulnerability). It then forwards the received messages
to the native frame through hybrid postMessage. After that,
the defense solutions are enforced to protect W→N. They
attempt to obtain the message sender’s origin to apply their
policies. However, they can only obtain is the main frame’s
origin, rather than the real message sender’s origin (i.e., the
third-party frame’s).

CSV detection and defense solutions [6] [7] [8] may be
applied to mitigate the above threat. However, their performance
may also be limited. They rely on the analysis or detection of
source origins of received messages. The messages received
by the message handler of the main frame include not only
messages (“M1”) from the third-party frame, but also messages
(“M2”) from the native frame. They may protect M1, but not
M2, because the source origin of M2 may not be provided in
hybrid postMessage.

Contributions. In this paper, our contributions are four-
fold. First, we conduct the first systematic study on hybrid
postMessage and identify the novel security issue “OSV”.
Second, to evaluate the prevalence and presence of hybrid
postMessage and OSV in Android hybrid apps, we design
a lightweight detection tool, called OSV-Hunter, that can
help developers and analysts identify hybrid postMessage and
discover potential OSVs. Different from existing detection tools
[10], [14], which fall short of filling the web-mobile gap and
tracking origins, OSV-Hunter automatically discovers message
senders and receivers, and analyzes the semantics of the link
between them.

Third, we evaluate OSV-Hunter using a set of popular apps.
We found 74 apps implemented hybrid postMessage, and
all these apps suffered from OSV, which may be exploited
by adversaries to perform denial of service (DoS), local
critical hardware device access (such as real-time microphone
monitoring), data race, internal data manipulation, and so on.
Several popular frameworks and libraries suffer from OSV, such

as Facebook React Native and Google cloud print. Several high-
profile apps are also impacted, such as Adobe Reader and WPS
office. In addition to the Android platform, OSV also impacts
other platforms (like iOS), since the hybrid postMessage APIs
of vulnerable frameworks (such as Facebook React Native) are
also available in these platforms.

We have reported all our findings to the Android security
team, and the relevant framework, library, or app developers.
We are actively helping them fix the discovered OSV problem.
The Facebook security team has confirmed our findings in the
React Native development framework, and they also admitted
that it was difficult to eliminate the security problem caused by
OSV in their current implementation. Instead, they explicitly
added a security warning in their development documentation
[15].

Lastly, motivated by the above difficulty faced by developers
to eliminate OSV, we design and implement a set of new hybrid
postMessage APIs in the newest WebView, called OSV-Free.
Our evaluation shows that OSV-Free is secure and fast, and it
is generic and resilient to the notorious Android fragmentation
problem. We also demonstrate that OSV-Free is easy to use,
by applying OSV-Free to harden the complex “Facebook React
Native” framework. OSV-Free is open source, and its source
code and more implementation and evaluation details are
available online: http://success.cse.tamu.edu/lab/osv-free.php.

Paper Organization. The rest of the paper is organized as
follows. We first introduce the necessary background and the
threat model and define the OSV problem (Section II). Next, we
present the design and implementation details of our detection
tool OSV-Hunter (Section III). Then, we show our study results
about hybrid postMessage and OSV (Section IV). After that,
we present the design and evaluation of our mitigation solution
OSV-Free (Section V). Last, we present related work (Section
VI) and discussion (Section VII), and conclude in Section VIII.

II. BACKGROUND AND PROBLEM STATEMENT

A. Background: postMessage and WebView

1 // Send a message
2 window.postMessage(m, t)
3
4 // Enable the first message handler
5 function message_handler(e) { ... }
6 window.addEventListener("message", message_handler, false

)
7
8 // Enable the second message handler
9 onmessage = function (e) { ... }

Listing 2: Usage of postMessage

postMessage. postMessage is frequently used to exchange data
between different origins in HTML5-enabled web applications.
Listing 2 presents the basic usage of postMessage. In Line 2,
window.postMessage() is called to send the message content
m to the target origin t. From Line 4 to Line 9, two message
handlers are enabled in two different manners : 1) calling the
method addEventListener() to register the message handler
‘message_handler()’ (Line 6); 2) or rewriting the global object
onmessage to enable an anonymous message handler (Line
9). Please note that when a message arrives, both these two
message handlers will be called to handle it.

http://success.cse.tamu.edu/lab/osv-free.php


When a message handler is called, the parameter e carries
all required information, such as the message content ‘e.data’,
the message source origin ‘e.origin’, and the message sender’s
window reference ‘e.source’. Please note that ‘e.source’ may
also be used to identify the message sender. However, in this
paper, we mainly focus on ‘e.origin’.

The message handler (receiver) is responsible for validating
the source origin to ensure the message is from a trusted
origin. This requirement is deferred to the message handler
implementation and not enforced by the OS or framework. The
absence of such validation will cause the client-side validation
vulnerability (i.e., CSV), which is well studied by existing
work [6]–[8].
WebView. WebView is an embedded UI component used to
render web pages and run JavaScript code within mobile apps.
For this purpose, WebView provides APIs to directly load
web content or run JavaScript in WebView, such as loadUrl().
Please note that if the API parameter is JavaScript code, the
code will be executed in the main web frame.

WebView is powerful and customizable. WebView can
specify event handlers to handle web events that occur in
WebView. For example, shouldInterceptRequest() can handle
the content loading event.
The Official Hybrid postMessage APIs in WebView.
In Android 6.0, cross-document APIs (such as “Web-
View.postWebMessage()”) and channel messaging APIs (such
as “WebView.createWebMessageChannel()”) [16] are added.
However, both suffer from the Android fragmentation problem
[5]. Based on the new Android version distribution data [17]
(Nov. 2017), almost 42% of Android devices do not support
these official APIs. Furthermore, compared with postWebMes-
sage(), createWebMessageChannel() can allow bidirectional
communication. However, in our empirical study, we found
channel messaging was heavy, and rarely implemented and
used in hybrid postMessage.
JavaScript Bridge. WebView also allows JavaScript Bridge,
which provides a channel linking web code with na-
tive code. More specifically, apps can run the API

“addJavascriptInterface(O, N)” to import a Java object O to
the JavaScript context. Then, O can be directly accessed by
JavaScript code using its name N.

However, WebView does not provide any access control on
JavaScript Bridge. Any JavaScript code loaded in WebView
can easily access it without any limitations. This has been well
studied by existing work [4] [9] [10].

Several defense solutions [4] [9] have been proposed to
protect JavaScript Bridge, and cure its intrinsic weakness.
However, as discussed in Section I, if JavaScript Bridge is
applied in the hybrid postMessage implementation, existing
defense solutions cannot defend against attacks.

B. Threat Model

In this paper, we focus on hybrid-postMessage enabled
Android hybrid apps. We assume the native code is benign,
and the content loaded in WebView may be untrusted. We
consider the following two scenarios.

• Web Attacks: Adversaries control several domains and web
servers. When these servers are accessed, adversaries can
inject malicious code. However, adversaries do not have
capabilities to monitor the communication between apps and
other domains or servers that do not belong to adversaries.
Generally, we assume the content from the first-party server
is trusted, while content from third-party servers may be
malicious or harmful.

• Network Attacks: Adversaries can hijack unsafe connections
(such as communication over HTTP) through man-in-the-
middle attacks (MITM). These are common in some practical
scenarios such as public WiFi access.

C. The OSV Problem Definition

We define OSV based on the possible violation on postMes-
sage’s security model (or design guideline) [1], which is defined
as follows. We assume SF and RF are the frames which a
message sender and its corresponding message receiver belong
to respectively. The security model can be defined using the
following two rules.
• Rule I: When a message is being sent, its target origin

Torigin should satisfy that 1) Torigin is specified or implied;
2) Torigin = RForigin or Torigin =“*”.

• Rule II: When a message is being received, its source origin
Sorigin should meet that 1) Sorigin is defined; 2) Sorigin =
SForigin; 3) Sorigin is unique for SF .
Hence, if the above two rules are not followed in hybrid

postMessage, OSV may exist. For convenience, we define four
sub-vulnerabilities (i.e., V1 to V4) based on the violation of the
above two rules in two directions, as shown Table I.

Direction Native → Web Web → Native
Violated Rule Rule I Rule II Rule I Rule II

Sub-Vulnerability Type V1 V2 V3 V4

Table I: Definitions of Four Sub-Types of OSV

������� ���	
 ���

��� ������

Figure 5: Attacks On V2

The four OSV sub-vulnerabilities disclose more attack
patterns than those discussed in Section I. For example, consider
a scenario in Figure 5. Alice and Mallory are web frames, while
Bob is a native frame. Bob sends messages to Alice through
hybrid postMessage. Due to V2, the source origin of the native
frame may not be provided or not unique. Mallory may be able
to forge a message with the same source origin, by creating a
nested controllable iframe that has the same origin, and then
sending a crafted message from the new iframe to Alice using
the typical web postMessage. When Alice receives the message,
Alice notices that the source origin is the same as the native
frame’s. As a result, Alice treats Mallory as Bob and allows
Mallory to access the internal functionalities. If Alice carries
critical functionalities or data, serious consequences may be
caused.



To prevent V2, it is important to ensure the uniqueness of
the source origin of the native frame. However, even if the
source origin is unique, it is hard to manage and may still
introduce security issues. For example, to receive messages
from the native frame, Alice may need to relax its validation
logic for all incoming messages, which may cause CSV. In
our evaluation (Section IV), we show such problems exist in
real-world apps.

III. OSV-HUNTER DESIGN AND IMPLEMENTATION

A. Design observations

OSV-Hunter is designed to identify apps with actual hybrid
postMessage implementations, and vet such implementations
against OSV in a lightweight and generic way, based on several
key insights and observations:
• The JavaScript method window.postMessage() should

be a message sender of hybrid postMessage: “win-
dow.postMessage()” may be 1) directly called in web frames,
or 2) indirectly invoked in the native frame through WebView
JavaScript code loading APIs (such as WebView.loadUrl()).
For example, the following Java code sends native data (i.e.,
content) from the native frame to the main web frame:

WebView.loadUrl("javascript:window.postMessage(’" +
content + "’, ’*’)").

In both cases above, “window.postMessage()” should be a
communication launcher (message sender). To discover its
corresponding message receiver, its parameter, especially
the message content c, should be tracked. If c appears in
a function f of the opposite frame, f is likely a message
receiver.
To implement it, a special and unique string ID, such as

“PM_Case1_<Random Number>” for the first case and “PM_-
Case2_<Random Number>” for the second case, is injected
into c and tracked. More specifically, in the native frame, all
native function invocations should be checked to verify if
their parameters contain ID. If ID is found, there should be
a link between window.postMessage() and the firstly found
native function. For the second case, all message handlers
of web frames should be monitored. Once ID appears in the
message handlers of a web frame, there should also be a link
from the native function that executes window.postMessage()
through WebView.loadUrl() to the message handlers of the
web frame.

• A message handler of a web frame may be a message
proxy, or receiver: It is possible for a message handler to
1) receive messages from the native frame (i.e., N→W ), or
2) forward messages received from other web frames to the
native frame (i.e., W→N). The above possibilities can be
verified respectively. For the first possibility, the value of the
parameter of the message handler should be monitored to
check if ID exists. For the second possibility, similar with
how window.postMessage() is handled, the received message
content of the message handler should be tracked. For this
purpose, if no ID exists in the received message content,
a new ID, such as “MH_ForwadingMessage_<Random
Number>”, should be injected into the received message

content. When the message content is forwarded, if the ID
appears in a native function in the native frame, the native
function is likely a message receiver. Hence, there may be a
link between the message handler of the web frame and the
native function of the native frame.

• The APIs (such as web-mobile bridges) that provide cross-
platform functionalities are likely utilized to implement hybrid
postMessage: For example, apps may execute JavaScript code
to trigger a message event using the JavaScript execution
APIs (like WebView.loadUrl()). Hence, the parameters of
these APIs should be carefully handled. Additionally, Web-
View.postWebMessage() should also be monitored, since it
can be used for N→W messaging.

B. Design Details

Guided by these observations, we designed two main phases
in OSV-Hunter containing a number of sub-modules, as shown
in Figure 6. In Phase#1, “hybrid postMessage Identification”
fills the semantic gap between the native and web frames,
and identifies the implementation of hybrid postMessage. In
Phase#2, “Message Origin Analysis” collects all delivered
messages between message senders and receivers, and performs
origin analysis to determine the existence of OSV.

More specifically, given a hybrid app, a fuzzing module
“Tester” is first started to 1) trigger as many WebView compo-
nents as possible, and 2) attempt to trigger message senders of
both the native and web frames. When a WebView component
appears, the loaded HTML/JavaScript code is analyzed and in-
strumented to discover potential message senders and receivers
in web frames. It is achieved by the modules “HTML/JS
Analysis” and “HTML/JS Instrumentation”. To monitor all
messages cross the native frame, the native code is instrumented
by the module “Native Code Instrumentation”. Then, by
collecting and analyzing the information generated by above
modules, message senders and receivers can be identified and
linked together, which is done by the module “Source & Target
Link Generation”. Finally, the “Message Content Collection”
module dumps all content of delivered messages, which are
further analyzed in “Message Origin Analysis” to determine
the existence of OSV.

We next describe the design details of each sub-module.
1) Hybrid postMessage Identification:

a) Tester: To trigger WebView and run native code (for
triggering message senders in the native frame), we use a
random UI explorer “Monkey” to simulate users’ behaviors
[18]. Once WebView is started, network activities may occur.
Then, the pre-defined JavaScript fuzzing code is injected into
network traffic based on our threat model (Section II-B), which
is done using the popular proxy tool “mitmproxy” [19]. Please
note that in order to perform network attacks, network links
are crawled to check if a HTTP link can be navigated. For
convenience, we limit the crawl depth as three.

The above injected JavaScript fuzzing code is designed to
drive the test on W→N. Usually, the JavaScript methods that
send messages (e.g., window.postMessage()) are called in all



��������	
��
��	����������� ��������������

��������

	
��
���

��������

�
������
�����
 ����������������

��
����
������


�������������
������
�����


��������	�������	�
����	��������

����������
��
��

���������


�
 ����

	!!�������
 "��
��� �������������

Figure 6: OSV-Hunter’s Workflow

kinds of environments. It is implemented mainly based on
existing work, such as the work of Schwenk et al. [20].

Please note that even when a WebView component is started,
Monkey is still kept running. It is because this is helpful to
trigger as much native code as possible, and thus, message
senders in the native frame may be triggered.

b) HTML/JS Analysis And Instrumentation: When HTML
is going to be loaded in WebView, the HTML content is
analyzed and instrumented as follows. First, the first page of
the HTML code and all JavaScript code are cached in local
storage for further instrumentation. Please note that JavaScript
code will be handled by JS Analysis and JS Instrumentation
later. Then, all important remote links in HTML are converted
to local links, such as the link specified by the “src” attribute of
the element “<script>”. So that the local instrumented content
can be loaded in run-time, instead. To analyze and instrument
the content of nested frames, an extra WebView event handler
implementation of shouldInterceptRequest() (Section II-A) is
imported to handle the nested frame loading event, and control
the content of nested frames.

JavaScript code is analyzed and instrumented as follows.
First, message senders (such as window.postMessage()) are
identified and handled by inserting extra instructions to print
necessary information (like the origin of the web frame that
the message sender belongs to), and instrumenting the method
parameters, such as inserting ID if ID does not exist.

Then, message handlers are processed. To hook a message
handler method f , a wrapper function f ′, which has the same
function prototype with f , is defined to replace f . In f ′, all
necessary information is printed, such as the web frame’s origin
and the method parameters, and then, f is called and fed with
f ′’s parameters. In this way, the original semantic of the web
code is kept. To track the message content received by f ′, ID
is injected.

c) Native Code Instrumentation: Native code is instru-
mented to discover all message sending and receiving activities.
To discover a message receiver of W→N, all native functions’
parameters are checked, which is done by instrumenting the
run-time interpreter in Android ART (i.e., DoCall() in the file

“interpreter_common.cc”). If a parameter is a string, its low-
level object StringObject is retrieved for further analysis, such
as converting it back to a normal string, and checking if ID
exists.

To discover the message sender of N→W , critical APIs
(such as WebView.loadUrl() and WebView.postWebMessage())
are monitored, which is done by instrumenting the Android
framework code to record the parameters of these APIs. Please

note that if the parameters of WebView.loadUrl() are JavaScript
code, the JavaScript code will be analyzed by the sub-module
JS Analysis and Instrumentation. If postWebMessage() is called,
the message content to be sent is also instrumented by inserting
ID.

d) Message Source And Target Link Generation: Guided
by the insight and observation (Section III), message senders
and receivers in both native and web frames can be identified.
First, all log information that is generated by HTML/JS Analysis
and Instrumentation, and Native Code Instrumentation is
collected. Then, the log is filtered using the special format of ID.
Finally, message senders and receivers can be linked together
by matching ID. Since each ID is unique, the established links
are also unique.

2) Message Origin Analysis:
a) Message Content Collection: To determine the exis-

tence of OSV, the content of all delivered messages are fully
dumped and collected. In the native frame, the content of all
related low level objects (e.g., StringObject) are dumped. In the
web frames, the content of all JavaScript variables is printed. If
a variable is an object, all its fields (including inherited fields),
and the corresponding values are logged.

All other critical logs are also gathered, such as the ones
containing origin information of message senders and receivers.

b) Vulnerability Determination: OSV can be determined
based on the definitions of the four sub-vulnerabilities (Section
II-C). More specifically, V1 and V4 can be automatically
determined by checking if the origin information is contained
in relevant APIs or delivered messages using the information
collected by the sub-module “Message Content Collection”.
However, for V2 and V3, it is challenging to analyze the origin
information, since the native frame does not have an explicit
origin. Hence, manual efforts may be needed in this phase.

C. Implementation

We implement OSV-Hunter by instrumenting the Android
source code (the 6.0 version). All modules are built from
scratch, except HTML/JavaScript analysis and instrumentation.
The HTML analysis and instrumentation module is built
based on JSoup 1.10.3, and the JavaScript analysis and
instrumentation module relies on Mozilla Rhino 1.7.7. JSoup
and Rhino are written in Java, and added into WebView as
libraries. Please note that Rhino is very powerful, but in OSV-
Hunter, we only statically use it to generate and manipulate
AST (Abstract Syntax Tree) of target JavaScript code, and
convert AST back to new JavaScript code.



IV. STUDY OF HYBRID POSTMESSAGE AND OSV
A. Data Set

To build an appropriate data set for the evaluation, we
crawled 17K most popular free apps from 32 categories (top
540 apps for each category) in Google Play in July 2017.
However, not all apps should be analyzed. For example, some
apps do not even use WebView.

Therefore, to reduce the workload, we establish two qualifi-
cations to narrow down our data set. The first one is that apps
must contain at least one WebView instance. Thus, we use the
keyword “WebView” on apps’ disassembled code to statically
filter apps.

The other qualification is that apps should contain
postMessage-related code. To avoid potential false negatives,
both regular and hybrid postMessage should be included. For
this purpose, we use the background knowledge (Section
II-A) to establish our static filter. An expected app should
contain postMessage-related keywords such as: 1) “postMes-
sage”, which is used to send messages; 2) “WebMessage”,
which is frequently contained in official APIs, such as “Web-
View.postWebMessage()”; 3) “onmessage”, which is the global
message handler; 4) “addEventListener("message"”, which is
used to register message handlers.

As a result, 1,104 apps remain as our data set.

B. Results
In our study, we deployed OSV-Hunter in Nexus 5 to identify

apps that contain actual hybrid postMessage implementations.
Each app was tested for 10 minutes. Finally, we identified 74
apps that implemented hybrid postMessage and we also found
that all these apps were vulnerable.

The results are summarized in Table II. Several popular third-
party frameworks or libraries (like Facebook React Native,
and Google cloud print) suffer from OSV, and may cause
serious consequences, such as remote real-time microphone
monitoring, permanent data race, internal data manipulation,
denial of service (DoS) and so on. Furthermore, several high-
profile apps are impacted. For example, the Google cloud print
service in Adobe Reader and WPS office may suffer from DoS
attacks due to the OSV.

As shown in Table II, both N→W and W→N are demanded
and implemented by developers. For N→W , it is supported
in the React Native framework, the EclipseSource app, and
the WebView official API WebView.postWebMessage(). All
the implementations except WebView.postWebMessage() suffer
from V1, since the target origin of the message to be sent
cannot be specified. All the implementations, including Web-
View.postWebMessage(), may be impacted by V2, as the source
origin is not well provided in the message receiver. More
specifically, in the React Native framework, the source origin of
N→W is “undefined”. It is because a customized data structure
is designed to carry the delivered message. In the data structure,
the “data” field is set to contain the message content. However,
another important field “origin” is not defined. Hence, when a
message receiver reads the source origin of a received message,
“undefined” is obtained.

Although we did not find a good counter-example to prove
the origin “undefined” is wrong for the native frame (such as
“undefined” may be not unique), “undefined” is meaningless and
hard to manage. As discussed in Section II-C, such meaningless
origins may cause more security issues, such as CSV. A
similar problem is also found in WebView.postWebMessage(),
which provides a meaningless origin (empty string) as the
source origin. It is because in the native layer, the internal
implementation of postWebMessage() does not explicitly define
the origin of the native frame, and NULL is used at default.
Correspondingly, in the web space, an empty string is treated
as the source origin.

Different from the above implementations, the EclipseSource
app provides the source origin. However, the origin may not
be correct. It is because in this app, the JavaScript method
parent.postMessage() is hijacked by a JavaScript Bridge, where
the origin of the top frame is always used as the message source
origin, even when a message is sent from an iframe.

For W→N, it is implemented in all developers’ hy-
brid postMessage implementations. This suggests W→N
is highly demanded, and thus the official API Web-
View.postWebMessage() that provides the simple functionality
does not meet the requirement (Section I).

However, all W→N implementations are also impacted by
OSV, especially the sub-vulnerability V4. Note that V3 is not
flagged even though the required origin is not transferred. It is
because although in W→N the target origin cannot be specified,
it is implied in the message-sending methods themselves.
More specifically, to implement W→N, developers rewrite the
JavaScript method “window.postMessage()” to send a message
to the native frame at default. Hence, if the native frame is
unique, the target origin information should be implied in the
APIs themselves, since the native frame is the sole destination.
In fact, the native frame is unique. “window.open()” may create
a new native frame, but it does not influence the original native
frame’s uniqueness. It is because the new native frame is totally
independent of the original native frame, and web frames can
only communicate with their corresponding native frames.

V4 exists in all implementations. All source origins are lost
during message delivery. Hence, if malicious code is injected
into WebView, the malicious code can freely access the internal
functionalities inside the message receiver of the native frame.
Section IV-D demonstrates this sub-vulnerability may introduce
serious consequences.

C. Findings

From our study results, we have the following findings.

• Developers wrongly assume the content loaded in WebView is
trustable: This wrong assumption is reflected in developers’
implementations. For instance, in N→W , their implemen-
tations usually do not provide an interface to specify the
target origin. No matter what origin is loaded in the target
web frame, the message will be delivered. In W→N, when
the native frame receives a message, the source origin of
the message is not provided. This indicates that the content



Vulnerability Name
(App or Framework)

Impacted Apps
/ Total Apps Example App

Vulnerability Type
ConsequencesNative → Web Web → Native

V1 V2 V3 V4

Facebook
React Native 43/43

com.altvr.xxx
com.giantfood.xxx
...

4 ? 7 4
Monitoring Audio, Data Race, Internal Critical
Data Manipulation, ...

Google Print 30/30
com.adobe.xxx
cn.wps.xxx
...

7 4 Denial of Service

Eclipse Source 1/1 com.eclipsesource.xxx 4 4 7 4
Sending a message with a source origin not
belonging to itself

WebView’s
postWebMessage() 0/0 7 ?

Total Vulnerable Apps
/ Total Apps 74/74

Please note that 4 means the sub-vulnerability exists; 7 means the sub-vulnerability does not exist;
? indicates there are no strong evidences to verify whether the sub-vulnerability exists or not. The cell marked
with the grey color means the communication in that direction is not implemented.

Table II: The Evaluation Result

loaded in WebView is fully trusted, which may cause serious
consequences.

• The requirement of a feasible hybrid postMessage imple-
mentation may be urgent: Regular postMessage is still
very popular in hybrid mobile apps. However, compared
with regular postMessage, a feasible hybrid postMessage
implementation is more preferred. For instance, in many
apps, W→N is implemented by rewriting the JavaScript
method window.postMessage(), which breaks the regular
postMessage functionality.

• In all web frames, only the main web frame usually has the
capability to communicate with the native frame, but some
main web frames are treated as message proxies during
message delivery: Within our data set, we found 73/74
(98.6%) apps only allow the main web frame to exchange
data with the native frame, and 30/74 (40.5%) apps leverage
the main web frame as proxies.

• The blended vulnerabilities of CSV and OSV exist in real
world apps: 30 apps use the main web frame as message
proxies, where both CSV and OSV exist. As discussed in
Section I, the blended vulnerabilities may result in that
existing WebView defense solutions may be fooled.

• The official hybrid postMessage APIs are rarely used in
practice: Within our whole dataset, no apps use the official
WebView APIs. Compared with developers’ implementations,
the functionality provided by WebView.postWebMessage() is
too simple.

• The communication “W→N” is usually implemented relying
on JavaScript Bridge: JavaScript Bridge opens bridges
linking web code with native code. However, as JavaScript
Bridge usually does not carry any origin information, OSV is
likely caused. Although there are several solutions proposed
to protect JavaScript Bridge, all are limited in their ability
to prevent OSV (Section I).

D. Case Studies

1) Facebook React Native: Facebook React Native is a
third-party development framework that allows developers to
develop mobile apps purely in JavaScript. It supports several
popular mobile platforms (like Android and iOS). Thus, the
OSV vulnerability impacts all the supported platforms.

������������		
�	���	
����	������	���������

���������	
���


�����������

���������	�
��� ���������������

�


������	�����������

��������

���	�
���
����


����������

��	����
��	�����	���

����������	�������

�

�

�

��������

��
����
����	�


������� �� ��	

Figure 7: hybrid postMessage in Facebook React Native

The architecture of the React Native framework is shown in
Figure 7. In run-time, the running environment is first created.
Developers’ JavaScript code “DJ” is parsed and executed
by the embedded generic and powerful JavaScript engine
“JavaScriptCore”. Through JavaScriptCore, DJ can interact
with Android, such as creating native UI components, and
handling UI events.

WebView (i.e., customized WebView in Figure 7) is also
available in the React Native framework. To enable it, it is
required for DJ to create a WebView object O as the reference.
Listing 3 illustrates how to create a WebView object in DJ
(Line 9), and let WebView to show a remote web page (Line
13).

1 // A message handler
2 handleMessage(e) {
3 // The message content is saved in e.nativeEvent.data.
4 // However, the source origin is lost.
5 this.webview.postMessage("[native] received a message

: " + e.nativeEvent.data);
6 }
7 // Configure UI layout
8 render() {
9 return (<WebView // Create a WebView component ’O’

10 // Enable JavaScript
11 javaScriptEnabled={true}
12 // Load a remote web page in WebView
13 source={{uri: "https://developer.com"}}
14 // Register a message handler
15 onMessage={this.handleMessage}
16 .../>
17 );
18 }

Listing 3: Example Code of Creating A WebView Object in
DJ



In the React Native framework, hybrid postMessage is
implemented to allow the communication between O and the
JavaScript code loaded in the native WebView component
(for convenience, we denote the latter JavaScript code as
“WJ”). For this purpose, two APIs are added in O : 1)
WebView.postMessage() (Line 5 of Listing 3), which sends
a message from O to the main web frame of WJ; and 2)
WebView.onMessage() (Line 15 and Lines 2-6 of Listing 3),
which receives messages from the main web frame of WJ.

As discussed in Section IV-B, the hybrid postMessage
implementation of the React Native framework suffers from
OSV. More details are presented as follows.
Explanation. To support hybrid postMessage, the React Native
framework customizes Android WebView, where the origin
information is not carefully handled. More specifically, as
shown in “Customized WebView” of Figure 7, when a message
is sent from WJ, it first enters the native context (i.e., “Native
Customization”) through a pre-imported JavaScript Bridge,
where the origin information is lost. Then, the message is
delivered to the embedded JavaScript engine, and further
forwarded to O.

The key implementation is shown in Listing 1, and par-
tially discussed in Section I. In Customized WebView, the
JavaScript method window.postMessage() is rewritten. So that
when window.postMessage() is called in WJ, the message is
redirected to a pre-defined native function in the JavaScript
Bridge “__REACT_WEB_VIEW_BRIDGE”. However, during
the message delivery, the source origin information is lost.

To implement sending a message in the opposite direction,
the code shown in Listing 4 is used. The message content to
be sent is wrapped in a message event (Lines 3-6), and then is
dispatched to message handlers in the main web frame (Line
12). Since the message origin is not defined in the event wrapper,
“undefined” appears as the source origin. More importantly,
the implementation cannot ensure the code is executed in the
correct context (e.g., the target origin may not be right).
1 WebView.loadUrl("javascript:(function () {" +
2 "var event;" +
3 // Carrying message content in the customized data

structure
4 "var data = {’data’: " + message_content + "};" +
5 "try {" +
6 // Creating an event
7 "event = new MessageEvent(’message’, data);" +
8 "} catch (e) { ... }" +
9 // Sending the event to message handlers of the main

web frame
10 "document.dispatchEvent(event);" +
11 "})();")

Listing 4: Sending Messages To The Main Frame Through
WebView.loadUrl() In The Native Context

Examples. Because of the OSV problem, adversaries may
be able to send messages to message receivers to access the
internal functionalities, or play as message receivers to monitor
sensitive information contained in messages. com.altvr.xxx and
com.giantfood.xxx are two good examples to demonstrate the
problems.
• Case#1 com.altvr.xxx: It is designed for VR (Virtual Reality)

device management. Users can create events (such as party,
concert, and conference) and let others join in them. In
addition, even though there are no VR devices, the app can
still launch 2-D mode, which is available for most phones.

1 window.postMessage(
2 ’{’ +
3 ’"method":"enterSpaceForceVR",’ +
4 ’"args":{’ +
5 ’"Url":"<event_url>"’ +
6 ’}, ...’ +
7 ’}’)

Listing 5: Example Attack Code To Let Apps Forcely
Join Any Events

By leveraging OSV, malicious code injected into WebView
can freely access the functionality inside the message receiver
of O (i.e., WebView.onMessage()). As the example attack
code (Listing 5) shows, adversaries can call the method
“enterSpaceForceVR” (Line 3) to let the app silently and
forcibly join any events specified by adversaries (i.e., “Url”
in Line 5). If the microphone is enabled, adversaries may
be able to remotely monitor the microphone.
Hence, a feasible attack scenario for silently monitoring
the microphone is that an attacker first logs in developers’
website to create an event, and gets a URL of the created
event. Then, the attacker joins the event to wait for victims in
advance. After that, the attacker injects crafted malicious code
into the victim’s WebView through an embedded third-party
JavaScript library. Next, the malicious code triggers hybrid
postMessage and calls the “enterSpaceForceVR” method
with the pre-obtained event URL as the parameter. After
that, the app silently joins in the event controlled by the
attacker. Finally, the attacker may start to monitor the victim’s
microphone.
Furthermore, the above attack code may also cause data
race. When the app is opened, the app usually takes a long
time for initialization, especially when the microphone is
enabled. At that period, if the attack code shown in Listing
5 is injected and executed, a data race occurs. In our test,
the data race can be stably triggered. When a third-party
JavaScript lib is fetched by the app’s WebView, adversaries
can immediately inject and run attack code. Then, the data
race can be triggered. In addition, the influence of the data
race is continuous, and can only be avoided by totally
cleaning user data, or re-installing the app.
The cause of data race is that once the microphone is enabled,
a flag object will be initialized when the app is opened.
Before the flag object’s initialization, if the attack code is
executed, an exception will be triggered and the app will be
crashed.
In the above two attacks, the functionalities inside the
message receiver of O can be fully leveraged. It is because
due to OSV, the React Native framework does not provide
any source origin information for validation.
The implementation of the app’s message receiver is shown in
Listing 6. When a message is received, the message content
is retrieved and parsed (Line 5). Then, the message receiver
executes an arbitrary method whose name and arguments
are determined by the fields “method” and “args” of the
received message (Lines 9). Finally, the execution result “r”
is returned through WebView.postMessage() (Line 13).

1 // e is a WebView object in O
2 // Registering a message handler
3 e.onMessage = function(t) {



4 // Reading message content to a
5 var a = JSON.parse(t.nativeEvent.data);
6 ...
7
8 // Executing an arbitrary method in the WebView

object e
9 r = e[a.method](a.args);

10 ...
11
12 // Returning the execution result to WJ
13 e.refs.wv.postMessage(JSON.stringify({..., value: r

, ...}));
14 }),

Listing 6: Code Snippet of onMessage()

• Case#2 com.giantfood.xxx: It is a food shopping management
app. The operation on users’ cart (i.e., the shopping list) relies
on data exchange over hybrid postMessage. In WJ → O,
the main frame of WJ can send a command to ask for
corresponding actions, such as opening and editing cart, and
adding and removing items to or from the cart.
Hence, a feasible attack scenario is that an attacker injects
malicious code through an HTTP link, and then, sends
messages through WJ→ O to manipulate the app’s internal
data.
The implementation of the message receiver of O is shown in
Listing 7. When a message is received, its content is directly
parsed and dispatched to the corresponding event handler.
Hence, if the content of the transferred message is equal to
the values in “SHOPPING_LIST”, all internal functionalities
can be accessed.

1 // The message receiver in O ’WebView.onMessage()’
2 key: "onMessage",
3 value: function(e) {
4 // Dispatch events based on the message content
5 // However, the message’ source origin is not

provided for validation
6 switch ((e.nativeEvent.data)) {
7 case SHOPPING_LIST.OPEN:
8 // Dispatch the event
9 (0, N.tagEvent)(SHOPPING_LIST.OPEN);

10 break;
11 case SHOPPING_LIST.EDIT: ...
12 ...

Listing 7: Code Snippet of onMessage()

2) Google Cloud Print: The Google cloud print library is
designed to provide the cloud print service. It is very popular,
and available in many high-profile documentation management
apps. The library is usually started by an inter-component
communication (i.e., Intent) message that carries the details of
the document to be printed (such as file URI and type). Then,
it opens a WebView component to load a remote print web
page. As shown in Listing 8, when the web page is fully loaded
(Line 1), a message handler is registered in the native context
(Line 4). The message handler works as the message proxy to
forward all received messages to the native layer (Lines 7-9).
It is done by calling a JavaScript Bridge (Line 8).

1 public void onPageFinished(WebView view, String url) {...
2 webView.loadUrl("javascript:" +
3 // Registering a message handler as message proxy
4 "window.addEventListener(" +
5 "’message’," +
6 // Forwarding all received message content to

the native frame
7 "function(evt) {" + // CSV exists
8 " window." + JS_INTERFACE + ".

onPostMessage(evt.data)" +
9 "}, " +

10 "false" +
11 ")");
12 }

Listing 8: The Source Code of Registering A Message
Handler In Google Print

Please note that although a JavaScript Bridge is used in
the message handler of the main web frame, we still count
the JavaScript Bridge as part of the implementation of hybrid
postMessage. It is because in this scenario, the native function
(“onPostMessage()”) of the JavaScript Bridge is the essential
message receiver that handles the received message content.
It is also reflected in its implementation, which is shown in
Listing 9. In the native function, the message content is handled
and parsed. If it is equal to a constant value, which is saved in
the variable “CLOSE_POST_MESSAGE_NAME”, the service
will be finished.
1 public void onPostMessage(String message) {
2 // CLOSE_POST_MESSAGE_NAME is a constant string
3 if (message.startsWith(CLOSE_POST_MESSAGE_NAME)) {
4 finish();
5 }
6 }

Listing 9: Source Code of The Message Handler In Google
Print

The above implementation of W→N suffers from V4, since
the source origin is lost. As a result, DoS may be caused,
considering the following situations: 1) based on our URL
crawler (Section III-B1a), the web page loaded in WebView
contains an HTTP link, which may be leveraged to inject
malicious code; 2) adversaries can leverage hybrid postMessage
to send a special message to the native frame to stop the service.
If the content of the sent message is equal to the value of the
variable “CLOSE_POST_MESSAGE_NAME”, DoS may be
caused.

In addition, the message handler of the main frame is also
a message proxy. However, CSV exists, which indicates that
the scenario about the blended attacks on OSV and CSV is
feasible (Figure 4).

V. THE MITIGATION SOLUTION : OSV-FREE APIS

A. Goals

Motivated by our study result, we aim to design safe hybrid
postMessage APIs. The new APIs should achieve the following
goals:
• Meeting the development requirements: The new APIs should

provide both N→W and W→N functionalities.
• Secure: The APIs should not be affected by OSV.
• Fast: The APIs should only introduce low overhead.
• Easy to use: The APIs should be easily applied and

integrated.
• Generic: The APIs should be resilient to the notorious

Android fragmentation problem, and support as many devices
as possible.

B. Overview

Guided by the above goals, we design the OSV-Free APIs.
To avoid potential vulnerabilities, such as V2, we explicitly
define the origin of the native frame as “nativeframe”. To the
best of our knowledge, the origin is meaningful and unique.
Please note that the origin is configurable. If an error is found in
the origin, the origin can be changed by developers or updated
by users.



API Context Role API Description

Web Message Sender void postMessageToNativeFrame(String msg) Sending msg to the native frame

Native
Message Sender void postMessageToMainFrame(String msg, Uri targetOrigin) Sending msg to the main web frame whose origin

is targetOrigin

Message Receiver void receiveMessageFromMainFrame(Callback callback) Registering a callback function to receive messages
from the main web frame

Table III: OSV-Free APIs

Similar to existing hybrid postMessage implementations
(Section IV-C), we also only allow the main web frame to
communicate with the native frame. Moreover, to avoid the
weakness of existing security solutions (Section I), the APIs
offer fine-grained origin information and rich hints for building
the whole picture of the message delivery, which is helpful to
let developers be aware of the blended attacks on OSV and
CSV.

As a result, we propose three new hybrid postMessage
APIs, called OSV-Free, to allow the secure, fast and generic
messaging between the native frame and the main web frame.
The APIs are listed in Table III, and more design details are
discussed as follows.

In the native frame, the new API postMessageToMainFrame()
is proposed to allow the native frame to send messages to the
main web frame. Since the API can specify the target origin
and ensure only the target origin can receive messages, the
sub-type vulnerability V1 is eliminated. Correspondingly, in the
main web frame, the message handlers can receive messages
from the native frame as normal. Since the meaningful and
unique source origin “nativeframe” is provided, V2 is also
eliminated.

In the main web frame, the new JavaScript method postMes-
sageToNativeFrame() is created. Since the native frame is
the sole destination, the target origin is already implied
in the API itself, and thus V3 is eliminated. In the native
frame, to receive messages from the main web frame, a
callback function is registered in advance through the API
receiveMessageFromMainFrame(). Then, when a message
arrives, the callback function is called to handle it with multiple
level origin information, so that it can conduct the fine-grained
validation. Therefore, V4 is also eliminated.
1 public class Callback {
2 public void onMessage(
3 String frameOrigin,
4 String scriptOrigin,
5 boolean isProxyInvolved,
6 String data);
7 }

Listing 10: The Prototype of onMessage

Listing 10 shows the prototype of the native callback function
“onMessage”. When a message is received by the callback
function, three levels of origin information is provided so that
the callback function can perform validation in a fine-grained
way, and also obtain hints about the whole picture of the
message delivery process. More specifically, the first provided
origin “frameOrigin” indicates the origin of main web frame;
the second origin “scriptOrigin” provides the origin of the
embedded script, where the JavaScript method that sends the
message is located; the third variable flag “isProxyInvolved”
indicates whether the main web frame is forwarding a message

��������	
���
�������
���
	


��������

�	
��	�

�����
		��	���	�


���	��

�	��	�

��

���������

	
��
����

��
�

���������

�
���������

����

Figure 8: OSV-Free’s Design

as a proxy. If the flag is true, the scenario similar to what is
shown in Figure 4 is faced. Hence, developers should carefully
handle this situation.

Furthermore, OSV-Free also brings benefits to existing
defense solutions for CSV (“D1”) and defense solutions for
WebView (“D2”). More specifically, OSV-Free makes D1
effective again, since it provides required source origins. OSV-
Free also makes up the deficiency of D2 by providing multiple
level origin information. Thus, D2 can also offer fine-grained
security enforcement and also be aware of the blended attacks
on CSV and OSV.

C. Design and Implementation

The key observation behind OSV-Free is that in Android 5+,
the declaration and implementation of WebView’s interfaces are
separated. The implementation is placed in a standalone library,
which is self-managed and self-updated. Hence, we mainly
implement OSV-Free by instrumenting the above library, which
brings benefits of easy upgrade and minimal modification on
the Android source code.

In Android, users can select a browser provider as the library.
Currently, Chromium [21] is the default provider. Roughly,
Chromium consists of three modules : 1) content, which links
Android WebView with the render module together; 2) render,
which is responsible to handle rendering tasks and interact
with the JavaScript engine V8; 3) V8, which is a open-source
JavaScript engine developed by Google.

OSV-Free’s design is shown in Figure 8. OSV-Free mainly
consists of two parts : OSV-Free WebView and Customized
Chromium Provider. OSV-Free WebView is a WebView
wrapper that declares the native APIs postMessageToMain-
Frame() and receiveMessageFromMainFrame(), while Cus-
tomized Chromium Provider provides the essential implementa-
tions of the above two native APIs. For the remaining JavaScript
method postMessageToNativeFrame(), Customized Chromium
Provider can automatically enable it in the main web frame,
when a callback function is registered through the native API
receiveMessageFromMainFrame(). Please note that OSV-Free



WebView should be integrated into vulnerable apps to replace
the original WebView.

To implement OSV-Free, Chromium’s content and render
modules are instrumented for each provided API as follows.

• postMessageToMainFrame(): This API is implemented by
reusing existing methods. When the API is called, the
customized content module is started, and then an internal
API, called postMessageToFrame(), is invoked to handle the
whole task of the N→W message.
• receiveMessageFromMainFrame() And postMessageToNa-

tiveFrame(): receiveMessageFromMainFrame() is imple-
mented by instrumenting the content and render modules.
When the API is called, the content module is entered,
where the API’s parameter is cached, parsed, and checked to
make sure the format is correct and its internal callback
function is not empty. Then, a message is sent to the
render module to notify that a callback function is being
registered. After that, the render module reads the context
of V8, and binds a pre-defined callback function f to V8
as “postMessageToNativeFrame()”.
In run-time, when postMessageToNativeFrame() is called
in the main web frame, f follows. Then, in f , multiple
level origin information is collected. The origin of the main
web frame “frameOrigin” is obtained by identifying the
mainframe object in the frame tree and retrieving the last-
loaded URL from the mainframe object. It can be done by
calling “frame_tree()->GetMainFrame()->last_committed_-
url().GetOrigin().spec()”. The origin of the nested script
“ScriptOrigin” can be retrieved from the last node of the
frame stack (i.e., v8::StackTrace::CurrentStackTrace()). The
flag “isProxyInvolved” is configured by checking if a
message handler is called, which is done by analyzing
the above frame stack. Currently, only the global message
handler “onmessage” is supported. We leave supporting other
message handlers as our future work.
Later, the render module packs all above origin information
together with the message content and sends them to
the content module. Finally, developers’ callback function
“Callback.onMessage()” is called with multiple level origin
information and the message content.

D. Evaluation

In this section, we present our evaluation result of OSV-Free
on its performance, effectiveness, and compatibility. In the end,
we also demonstrate that OSV-Free is easy to use.

1) Performance: To evaluate OSV-Free’s performance, we
develop a simple app to call the OSV-Free APIs. We found
that OSV-Free was fast, and only used ~2 milliseconds. The
details are shown in Table IV.

More specifically, we record the starting and ending time
of the API execution, and then compute the time difference
as the cost. However, we found it was challenging to record
the time in two different platforms. To mitigate the problem,
we select the method “Date.getTime()”, which is available in
both web and native platforms, and also record the time using

Target Item APIs
Average

Cost Time
(milliseconds)

The official API
(N→W ) postWebMessage() 2.63

OSV-Free N→W postMessageToMainFrame() 2.23

OSV-Free W→N postMessageToNativeFrame →
receiveMessageFromMainFrame() 2.08

Table IV: The Performance of OSV-Free APIs

the same standard. The method returns the milliseconds since
midnight 01 January 1970 UTC.

2) Effectiveness: To check OSV-Free’s effectiveness, we use
OSV-Free to patch two vulnerable frameworks: the Facebook
React Native framework and the Google Print lib. We found
that the vulnerabilities could be eliminated. In N→W , only
the specified target origin can receive the message. When a
message is received, its source origin is the native frame’s
origin. In W→N, the target origin is implied in the function
postMessageToNativeFrame(), while the source origin of the
received message provides rich and correct origins.

3) Compatibility: To confirm OSV-Free’s compatibility,
we installed and successfully verified OSV-Free APIs in
several popular Android versions (5.0+). These tested versions
collectively occupy ~80% distribution of the Android market
[17].

4) Case Study : Patching The Facebook React Native
Framework: To demonstrate OSV-Free is easy to use, we
apply OSV-Free to patch the Facebook React Native framework
(version 46). We found only a few minutes were used in the
process. Our patching code is mainly located in the class
ReactWebViewManager. More details are shown as follows.

First, we import the OSV-Free WebView class into the
React Native framework. To make it effective, we make the
framework’s own customized WebView (i.e., ReactWebView)
inherit OSV-Free WebView.

Then, the communication “W→N” is enhanced. Initially,
it is implemented based on a JavaScript Bridge, which is
enabled by calling two Java methods setMessagingEnabled()
and linkBridge(). Instead, in its enhanced implementation,
our API postMessageToNativeFrame() is used. To enable
postMessageToNativeFrame(), in the above two Java methods,
the Java method receiveMessageFromMainFrame() is called
instead. Please note that a callback function is pre-defined as
the parameter of receiveMessageFromMainFrame() to receive
messages from web code. Once a message is received, the
received message content and multiple-level source origin
information are sent to the JavaScript engine JavaScriptCore
(by calling onMessage()), and finally forwarded to developers’
JavaScript code.

Lastly, the communication “N→W” is also improved. It is
done by instrumenting the native method receiveCommand().
When a command “COMMAND_POST_MESSAGE” is re-
ceived for sending a message from the native frame to the
main web frame, postMessageToMainFrame() is used instead.



VI. RELATED WORK

A. Regular postMessage Security

In past years, several detection and defense solutions for
regular postMessage were proposed. However, all of them
are incompetent to detect or defend against OSV. Barth et al.
[22] conducted a systematic study of the frame isolation and
communication, and enhanced postMessage. However, it could
not prevent postMessage from being misused, and also did not
support hybrid postMessage. Saxena et al. [7] highlighted the
client-side validation vulnerability (CSV) in postMessage and
proposed the detection tool “FLAX”. Weissbacher et al. [8]
applied the dynamic invariant detection technique in defending
against CSV. Son et al. [6] conducted a systematic study
of CSV on a large number of popular websites, and also
proposed novel defense solutions to defend against CSV. Guan
et al. discovered DangerNeighbor attacks on postMessage, and
designed a deployable defense solution. However, they were
only available to vet or protect the message receivers of N→W ,
and could not eliminate OSV by making up the lost origins.
Furthermore, since the source origin is not always provided
due to V2, their effectiveness may be impacted.

B. Android WebView Security

Recently, WebView security has attracted significant attention
from researchers. Luo et al. [23] explored the potential attack
vectors in WebView. Mutchler et al. [3] conducted a systematic
study on a large number of hybrid apps. Wang et al. [24]
studied the Intent abuse problem in hybrid apps. Georgiev et
al. [4] conducted a systematic study on web-mobile bridges.
Tuncay et al. [9] demonstrated the potential attacks on web-
mobile bridges. Jin et al. [25] disclosed new attack channels
for code injection attacks in WebView. Wu et al. [26] studied
file:// based attacks. Rastogi et al. [27] discovered web-mobile
bridges might be exploited by malicious content. Li et al. [28]
disclosed a novel cross-app infection attack on WebView. Yang
et al. [29] discovered a novel event oriented attack.

Several static analysis based approaches were proposed to
vet hybrid apps. However, they were not suitable to detect OSV,
since they failed to fill the semantic gap between the web and
native layers. Furthermore, they all could not track origins, since
the real data was missing. Chin et al. [30] statically analyzed
WebView vulnerabilities that result in illegal authorization and
file-based attacks. Yang et al. [10] and Hassanshahi et al. [14]
proposed static analysis tools to vet hybrid apps armed with
web-mobile bridges.

Other generic detection tools were also circumscribed to
detect OSV. For example, Flowdroid [31] and Taintdroid [32]
statically and dynamically applied taint analysis in the native
layer. However, both could not fill the web-mobile gap.

Several defense solutions, such as NoFrak [4], Draco [9],
MobileIFC [11], WIREframe [12], and HybridGuard [13], were
designed to provide protection for WebView and web-mobile
bridges. NoFrak and MobileIFC extended SOP into the native
layer. Draco and HybridGuard enforced security policies for
N→W by instrumenting either the chromium provide library, or

JavaScript code. WIREframe provided bidirectional protections
by directly instrumenting apps. However, as discussed in
Section I, all of them were not suitable to protect hybrid
postMessage.

VII. DISCUSSION

OSV-Hunter’s goal. Although some hybrid postMessage APIs
are implemented based on JavaScript Bridge, OSV-Hunter is
not designed to analyze JavaScript Bridge. Instead, it is used
to vet hybrid postMessage against OSV.
OSV-Hunter’s weakness. As a dynamic test tool, OSV-Hunter
may have false negatives. For example, OSV-Hunter uses the
random test tool “Monkey” to trigger WebView. However,
some apps’ WebView can only be shown when preconditions
are satisfied. For example, users must finish login, or a pdf file
must exist in local storage in advance. To mitigate the problem,
we assume all the preconditions are satisfied before our test.
Other ways to defend against V4. Developers may retrieve
the origin of the main frame through other ways, such as the
native API WebView.getUrl(), which provide the URL for the
current page. However, the API may fail and return NULL
[33]. Developers may also maintain the status of current URL
using event handlers [33]. However, this approach may also
fail, since event handlers may not be successfully triggered
[34].

VIII. CONCLUSION

In this paper, we conduct the first systematic study on hybrid
postMessage in Android apps and identify a new type of
vulnerabilities called Origin Stripping Vulnerability (OSV). To
measure the prevalence and presence of OSV, we design a
lightweight vulnerability detection tool, called OSV-Hunter.
Our evaluation on a set of popular apps demonstrates that OSV
is widespread in existing hybrid postMessage implementations.
Guided by the evaluation results, we design three safe hybrid
postMessage APIs, called OSV-Free, to eliminate potential
OSVs in hybrid apps. We show that OSV-Free meets the
development requirements: it is secure, fast, and generic.

ACKNOWLEDGMENT

We thank all framework/library/app developers, especially
the Facebook security team, for helping us confirm the OSV
issues. This material is based upon work supported in part
by the National Science Foundation (NSF) under Grant no.
1314823 and 1700544. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSF.

REFERENCES

[1] “Web messaging standard,” https://html.spec.whatwg.org/multipage/web-
messaging.html.

[2] “Same origin policy,” https://en.wikipedia.org/wiki/Same-origin_policy.
[3] P. Mutchler, A. DoupÃ, J. Mitchell, C. Kruegel, G. Vigna, A. Doup,

J. Mitchell, C. Kruegel, and G. Vigna, “A Large-Scale Study of Mobile
Web App Security,” in MoST, 2015.

[4] M. Georgiev, S. Jana, and V. Shmatikov, “Breaking and fixing origin-
based access control in hybrid web/mobile application frameworks,” in
NDSS, 2014.

https://html.spec.whatwg.org/multipage/web-messaging.html
https://html.spec.whatwg.org/multipage/web-messaging.html
https://en.wikipedia.org/wiki/Same-origin_policy


[5] S. Farhang, A. Laszka, and J. Grossklags, “An economic study of
the effect of android platform fragmentation on security updates,” in
ariv:1712.08222, 2017.

[6] S. Son and V. Shmatikov, “The postman always rings twice: Attacking
and defending postmessage in html5 websites,” in NDSS, 2013.

[7] P. Saxena, S. Hanna, P. Poosankam, and D. Song, “Flax: Systematic
discovery of client-side validation vulnerabilities in rich web applications,”
in NDSS, 2010.

[8] M. Weissbacher, W. Robertson, E. Kirda, C. Kruegel, and G. Vigna,
“Zigzag: Automatically hardening web applications against client-side
validation vulnerabilities,” in USENIX Security, 2015.

[9] G. S. Tuncay, S. Demetriou, and C. A. Gunter, “Draco: A system for
uniform and fine-grained access control for web code on android,” in
CCS, 2016.

[10] G. Yang, A. Mendoza, J. Zhang, and G. Gu, “Precisely and scalably
vetting javascript bridge in android hybrid apps,” in RAID, 2017.

[11] K. Singh, “Practical context-aware permission control for hybrid mobile
applications,” in RAID, 2013.

[12] D. Davidson, Y. Chen, F. George, L. Lu, and S. Jha, “Secure integration
of web content and applications on commodity mobile operating systems,”
in ASIA CCS, 2017.

[13] P. H. Phung, A. Mohanty, R. Rachapalli, and M. Sridhar, “Hybridguard:
A principal-based permission and fine-grained policy enforcement
framework for web-based mobile applications,” in MoST, 2017.

[14] B. Hassanshahi, Y. Jia, R. H. C. Yap, P. Saxena, and Z. Liang, “Web-to-
application injection attacks on android: Characterization and detection.”
in ESORICS, 2015.

[15] “Adding a security warning about osv in the facebook react native
framework,” https://github.com/facebook/react-native-website/pull/113.

[16] “Android webview message ports implementation,” https://developer.
android.com/reference/android/webkit/WebMessagePort.html.

[17] “Android version distribution: Nougat and oreo up, everything else
down,” https://www.androidauthority.com/android-version-distribution-
748439/.

[18] “Ui/application exerciser monkey,” https://developer.android.com/studio/
test/monkey.html.

[19] “An interactive tls-capable intercepting http proxy for penetration testers
and software developers,” https://github.com/mitmproxy/mitmproxy.

[20] J. Schwenk, M. Niemietz, and C. Mainka, “Same-origin policy: Evalua-
tion in modern browsers,” in USENIX Security, 2017.

[21] “The chromium projects,” https://www.chromium.org/.
[22] A. Barth, C. Jackson, and J. C. Mitchell, “Securing frame communication

in browsers,” in USENIX Security, 2009.
[23] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, “Attacks on webview in

the android system,” in ACSAC, 2011.
[24] R. Wang, L. Xing, X. Wang, and S. Chen, “Unauthorized origin crossing

on mobile platforms: Threats and mitigation,” in CCS, 2013.
[25] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code injection

attacks on html5-based mobile apps: Characterization, detection and
mitigation,” in CCS, 2014.

[26] D. Wu and R. K. C. Chang, “Indirect File Leaks in Mobile Applications,”
in MoST, 2015.

[27] V. Rastogi, R. Shao, Y. Chen, X. Pan, S. Zou, and R. Riley, “Are
these Ads Safe: Detecting Hidden Attacks through the Mobile App-Web
Interfaces,” NDSS, 2016.

[28] T. Li, X. Wang, M. Zha, K. Chen, X. Wang, L. Xing, X. Bai, N. Zhang,
and X. Han, “Unleashing the walking dead: Understanding cross-app
remote infections on mobile webviews,” in CCS, 2017.

[29] G. Yang, J. Huang, and G. Gu, “Automated generation of event-oriented
exploits in android hybrid apps,” in NDSS, 2018.

[30] E. Chin and D. Wagner, “Bifocals: Analyzing webview vulnerabilities
in android applications,” in WISA, 2013.

[31] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps,” in
PLDI, 2014.

[32] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in OSDI, 2010.

[33] “Webview.geturl() returns null,” https://stackoverflow.com/questions/
13773037/webview-geturl-returns-null-because-page-not-done-loading.

[34] “Android webview not calling onpagefinished when url redi-
rects,” https://stackoverflow.com/questions/10592998/android-webview-
not-calling-onpagefinished-when-url-redirects.

https://github.com/facebook/react-native-website/pull/113
https://developer.android.com/reference/android/webkit/WebMessagePort.html
https://developer.android.com/reference/android/webkit/WebMessagePort.html
https://www.androidauthority.com/android-version-distribution-748439/
https://www.androidauthority.com/android-version-distribution-748439/
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://github.com/mitmproxy/mitmproxy
https://www.chromium.org/
https://stackoverflow.com/questions/13773037/webview-geturl-returns-null-because-page-not-done-loading
https://stackoverflow.com/questions/13773037/webview-geturl-returns-null-because-page-not-done-loading
https://stackoverflow.com/questions/10592998/android-webview-not-calling-onpagefinished-when-url-redirects
https://stackoverflow.com/questions/10592998/android-webview-not-calling-onpagefinished-when-url-redirects

	Introduction
	Background and Problem Statement
	Background: postMessage and WebView
	Threat Model
	The OSV Problem Definition

	OSV-Hunter Design and Implementation
	Design observations
	Design Details
	Hybrid postMessage Identification
	Message Origin Analysis

	Implementation

	Study of hybrid postMessage and OSV
	Data Set
	Results
	Findings
	Case Studies
	Facebook React Native
	Google Cloud Print


	The Mitigation Solution : OSV-Free APIs
	Goals
	Overview
	Design and Implementation
	Evaluation
	Performance
	Effectiveness
	Compatibility
	Case Study : Patching The Facebook React Native Framework


	Related Work
	Regular postMessage Security
	Android WebView Security

	Discussion
	Conclusion
	References

