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Abstract—Distributed denial-of-service (DDoS) defense is still
a difficult problem though it has been extensively studied. The
existing approaches are not capable of detecting various types of
DDoS attacks. In particular, new emerging sophisticated DDoS
attacks (e.g., Crossfire) constructed by low-rate and short-lived
“benign” traffic are even more challenging to capture. Moreover,
it is difficult to enforce realtime defense to throttle these detected
attacks since the attack traffic can be concealed in benign
traffic. Software Defined Networking (SDN) opens a new door
to address these issues. In this paper, we propose RADAR to
detect and throttle DDoS attacks via adaptive correlation analysis
built upon unmodified commercial off-the-shelf (COTS) SDN
switches. It is a practical system to defend against a wide range
of flooding-based DDoS attacks, e.g., link flooding (including
Crossfire), SYN flooding, and UDP-based amplification attacks,
while requiring neither modifications in SDN switches/protocols
nor extra appliances. It accurately detects attacks by identifying
attack features in suspicious flows, and locates attackers (or
victims) to throttle the attack traffic by adaptive correlation
analysis. We implement RADAR prototype using open source
Floodlight controller, and evaluate its performance under various
DDoS attacks by real hardware testbed based experiments. We
observe that our scheme can successfully detect and effectively
defend against various DDoS attacks with acceptable overhead.

I. INTRODUCTION

The Internet has a long history of suffering from DDoS at-
tacks. Recently there is a dramatic escalation in DDoS attacks,
for example, the attacks on Dyn DNS services disconnected
many popular Internet services, e.g., Amazon and GitHub,
on October 21, 2016 [4]. Traditional methods for DDoS
defense [1], [3], [22] have a number of limitations. First, they
often require expensive hardware appliances, thus introducing
extra deployment cost and complex routing hacks [15]. In
addition, they are often unable to detect sophisticated DDoS
attacks, e.g., Crossfire [18], Pulsing DDoS attacks [27], as well
as some real-world DDoS attacks [14], which were constructed
to plague the Internet in a stealthy way. Worse still, it is
extremely difficult to enforce realtime defense against detected
attacks since the attack is stealthy and the attack traffic can
mimic behaviors of benign traffic [14], [17].

Recently, Software Defined Networking (SDN) enables a
new way to defend against DDoS attacks. A natural way
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of design is to rely on SDN switches to collect necessary
flow information and report it to the SDN controller. By
utilizing the controller’s global view on the network-wide flow
features, an SDN-based approach can be potentially effective
to detect and defend against DDoS attacks, and in fact,
such methods have been proposed recently [12], [15], [17],
[28]. Although these approaches have different implementation
details to detect attacks, they share a similar design principle
and architecture, as illustrated in Figure 1(a). A key issue in
the designs is to identify which flow information is necessary
and should be reported to the controller. Note that, due to
its capacity limitation, a controller is not able to receive and
analyze based on original flow counter information for all
network flows from all switches. A natural idea that all current
designs adopt is to rely on switches to perform pre-processing
on flow counter information, generate some brief statistics
(e.g., changes of flow rates), and report such brief information
to the controller.

Such deployments have been shown a number of ad-
vantages, but they are facing some fundamental challenges.
First, an SDN switch is only able to report flow counter
information, but is not designed to accomplish complicated
tasks in flow information pre-processing. Thereby, it has to
rely on extra components (e.g., appliances) to complete them,
which disables the ability to detect DDoS attacks using un-
modified commercial off-the-shelf (COTS) SDN switches and
incurs extra deployment costs. Second, flow pre-processing
in switches (e.g., analysis of changes of flow rates) may
lose important original information and thereby the controller
will mistakenly omit attack flows. This is especially serious
when stealthy attacks (e.g., Crossfire) or non-link-flooding
attacks (e.g., TCP flooding) take place. Under such attacks,
the information of changes of flow rates that switches report
to the controller is always normal, and thus it will be very
difficult for the controller to know if attacks happen. Therefore,
such approaches may neither be able to detect certain attacks,
nor the detection accuracy is questionable. Table I provides
a summary of the above representative approaches built upon
SDN1.

It is the lack of deployability on COTS SDN switches, as
well as our pursuit of high effectiveness and generality of
defense, that motivate our research. We would like to ask:· Is it possible to develop an SDN-based approach to effec-
tively detect and defend against a wide range of DDoS attacks
by using COTS SDN switches without extra appliances?

1We want to point out that though Bohatei seems not require switch
modifications, it does not detect DDoS attacks but defend against them
assuming such attacks are already detected.



TABLE I
COMPARISON WITH EXISTING DDOS DEFENSE BUILT UPON SDN.

Scheme Functionality1 Deployment Cost
TCP UDP/link flooding Crossfire Defense COTS SDN No Appliance Deployability Comm.

RADAR " " " " " " w/o changes low
BROCADE [12] N/A2 " $ " $ (sFlow)3 $ (sFlow) customized systems medium

SPIFFY [17] $ " " N/A $ (Sketch) " customized systems medium
Bohatei [15] $ $ $ " " $ (DC/NFV) w/o changes N/A

1 TCP represents TCP SYN flooding detection, UDP and link flooding represents UDP amplification detection and traditional link flooding detection,
Crossfire represents detection of sophisticated DDoS attacks, and defense represents if a scheme is able to throttle the attacks in realtime.

2 N/A indicates the metric of the scheme is unknown or the scheme is not comparable to others.
3 sFlow requires extra equipment to collect sFlow data.
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Fig. 1. DDoS defense enabled by SDN.

Our answer is yes. We propose RADAR (Reinforcing
Anti-DDoS Actions in Realtime), whose architecture is il-
lustrated in Figure 1(b). Comparing with the conventional
approaches, we have some fundamental innovations. First, we
enable interactions between controllers and switches so that
aggregated anomaly pattern in network-wide traffic triggers
collecting traffic in the controller and adaptively zooming in
the suspicious set. Thereby, the controller can dynamically
tell each switch which flows (instead of all flows) to in-
vestigate. Second, based on these limited number of flows
under investigation, the switches do not need to pre-process
flow information anymore but directly report original flow
counter information to the controller. Since the controller only
receives such flow counter information of limited flows being
investigated, it is able to analyze it and keep itself scalable
even in a large-scale network. In other words, facing the
scalability challenge, traditional approaches rely on switches
to simplify the flow information (which is costly and may
lose important information) of all network-wide traffic, while
our approach relies on the controller to dynamically identify
only a partial set of suspicious flows, instruct the switches to
monitor them and report original flow counter information of
such partial flows to the controller. We enable RADAR’s new
features on deployability, generality, and effectiveness by:
• Interactions between Switches and Controllers allow

controllers to instruct switches on how to collect partial
information, such that switches can perform collection
tasks by themselves without requiring appliances. Flow
filtering is achieved by the controller based on original
flow information, and thus it is more accurate without
omitting attack flows.

• Adaptive Correlation Analysis performed on Con-
trollers enables identifying and locating a wide range of
DDoS attacks (e.g., sophisticated link flooding like Cross-
fire, amplification, and SYN flooding attacks) based on
original flow counts collected from switches in realtime.

We also point out that SDN approaches are often with
scalability concerns. RADAR uses a distributed flow rule
placement to significantly reduce the number of rules needed
in each switch, and we will show it is highly scalable. In
summary, our contributions are three-fold:
• We design the RADAR architecture to detect a wide

range and sophisticated/stealthy DDoS attacks without
any modifications in SDN protocols or COTS switches.
It is the first system built upon COTS SDN switches that
can detect and throttle various DDoS attacks.

• We develop detailed algorithms in RADAR so that vari-
ous DDoS attacks are detected and throttled in realtime.

• We implement RADAR prototype in the Floodlight con-
troller, and perform experiments on a real hardware
testbed with real traces. The experiment results demon-
strate that it can effectively detect and throttle DDoS
attacks in realtime and is shown to be scalable.

II. BACKGROUND

A. DDoS Attacks

A distributed denial-of-service (DDoS) attack occurs when
attack traffic floods the bandwidth or resources of a targeted
system. Although the traffic patterns of traditional DDoS
attacks are well defined, it is still difficult to practically defend
against them in realtime. Sophisticated DDoS attacks are
recently created, e.g., Crossfire [18] and Coremelt attacks [30].
Instead of directly flooding victims, these attacks flood back-
bone links of ISPs and create a large number of attack flows
crossing the links that connect the victims to the Internet. By
congesting the links, the victim networks are disconnected
from the Internet. The attackers leverage different bots to
generate low-rate traffic with real IP addresses, making the
detection very difficult. Such attacks have attracted interests,
and some potential techniques [17], [19], [20] have been
proposed. However, up to now we are not aware of any existing
deployment that can effectively defend against such type of
DDoS attacks.
Example. Let us use a simple example to illustrate how
Crossfire attack works. In Figure 2, a victim node of such
attack has N paths to connect to the Internet. Let us first focus
on one particular path, i.e., path 1 composed of two serial
links, i.e., A and B. Two bots with addresses 32.0.0.1/24 and
240.0.0.1/24 generate traffic with real addresses to two decoy
servers that can be reached through A and B, respectively. Two
bots cooperate to generate traffic, such that the traffic shifts
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Fig. 2. A simple example of Crossfire attack

between A and B and the links are periodically congested (as
shown in the right part of Figure 2)2. Thereby, the path to
the victim composed of A and B is always congested. For
ease of illustration, here we only focus on path 1, while in
practice, a large number of bots generate various attack flows
on all possible links so as to congest the paths, and then the
victim is completely disconnected. In fact, there are real-world
attacks [14], [16] similar to Crossfire attacks, which use short-
lived and small flows to construct DDoS attacks.

B. Problem Statement

We aim to propose a practical system built upon SDN to
defend against a wide range of flooding-based DDoS attacks,
i.e., link flooding (including sophisticated attacks, e.g., Cross-
fire), SYN flooding, and UDP-based amplification attacks. The
proposed system does not need to modify the current packet
forwarding diagram and it is compatible with the current IP
data plane. With same assumptions as in the BROCADE DDoS
defense products [12] and the software-defined measurement
approaches [23], [34], we use SDN switches capable of large
flow rule entries so as to throttle attacks. Such powerful
switches are achievable in the market [7]. Based our exper-
imental results (see Section VI), we observe that scalability is
not a big concern.

In this paper, we use OpenFlow [9] as a representative of
network control APIs of SDN and study how SDN can be
leveraged to efficiently detect various DDoS attacks. It directly
leverages standard SDN (or OpenFlow) APIs without any
modifications in any protocols or implementations of SDN. It
can work with various releases of SDN controllers, e.g., Open-
Daylight [8] and Floodlight [5], and various brands of COTS
switches that comply with OpenFlow specifications. Therefore,
it can be deployed with one or multiple (or distributed) con-
trollers in large scale networks. Moreover, it does not require
any collaborations among ISPs. Consider a particular victim
of an attack. The attack traffic will be eventually aggregated
in the local network containing the victim. We can detect and
throttle the attack traffic to the victim by only investigating
this local network, even if the attacks originate from different
places of the wide area network.

2Both bots can generate any amount of traffic to either decoy server, i.e.,
a particular bot can vary its traffic on A and B from time to time, as long as
the total traffic generated by both bots periodically congests A and B, making
the attacks more stealthy.

III. ARCHITECTURE

In this section, we propose the architecture of RADAR.
RADAR is designed as an application, which can be embedded
into an SDN facility. Recall that RADAR allows COTS
switches to report flow counter information of a subset of
network-wide flows to the controller. To achieve this, switches
need to know which flow information is required by the
controller. The key challenge is to design an online and unified
detection architecture which is able to capture attacks based
on a limited number of counters for a wide range of attacks
without any prior knowledge. In principle, this is possible
because we have the following important observation.
Key Observation: Given the flooding victims of a particular
DDoS attack, any attack flow always correlates with the
attack traffic aggregated on the victims irrespective of flow
dynamicity.

Although flows from any individual client can be very
small, the aggregated traffic from groups of clients at the
targeted links is not, which is the attack goal. Aggregated
traffic allows us to capture the traffic anomalies. Further,
the detected anomalies notify the controller to dynamically
collect and analyze the traffic correlating with the aggregated
traffic, and thus the controller can detect the attack traffic.
In practice, in order to have such online architecture to
capture the correlation, we develop three main components
in RADAR, i.e., the collector, the detector, and the locator,
which adaptively interact with each other to collect a limited
number of required flow counters (see Figure 3).
• RADAR collector receives collection rules from the

detector and the locator depending on what type of
attack is of interest, and instructs the switches to collect
their interested flows from network-wide traffic, which is
triggered by the aggregated traffic.

• RADAR detector receives flow statistics from the col-
lector, and each modular in the detector performs the
correlation analysis of its suspicious flows to adaptively
generate fine-grained collection rules and detect attacks.

• RADAR locator receives signals from the detector, and
then adaptively generates collection rules to collect the
suspicious flows. It performs adaptive correlation analysis
between single suspicious flow and flows aggregated in
victims to locate and throttle attack traffic.

Note that, RADAR requires switches to be deployed close to
the victims. RADAR captures the attack flows by analyzing the
correlation between the flow captured at various locations and
the aggregated traffic close to the victim. Since the Crossfire
attack is one of the most sophisticated DDoS attacks, in the
rest of this section, we will use it as a typical case to illustrate
how RADAR detector works. Under Crossfire attacks, it is not
easy to identify attack packets even if the switches close to the
attack sources can capture the increase of flows. In particular,
by interactions among the three components, RADAR adap-
tively correlates traffic captured at different locations such that
it detects various attacks without any prior knowledge of the
attack flows.

The approach of Crossfire detection can be simplified to de-
tect other attacks. For instance, SYN flooding can be captured
by analyzing the ratio of the number of SYN packets to that
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TABLE II
NOTATIONS USED IN ALGORITHMS

Notation Meaning
i the round of the statistic retrieval

root the root pointer of the trie
Ld, Pd a set of victim links and victim paths, respectively
Fq [] an array with each element Fq [l] being the change

frequency of link l
Fs a set of possible tuples 〈fj , cfj 〉 collected by switch s,

with the first element of a tuple being a suspicious flow
fj and the second element being the counter number of
this flow fj

Ps a set of possible tuples 〈pj , cpj 〉 collected by switch
s, with the first element of a tuple being a port pj
delivering suspicious flows and the second element
being the counter number of all flows at this port pj

C1s[][] a matrix with each elementC1s[j][i] being the counter
number of flow fj in round i at switch s

C2s[][] a matrix with each elementC2s[j][i] being the counter
number of all flows at port pj in round i at switch s

R1s[][] a matrix with each element R1s[j][i] being the rate of
the change of the counter number of flow fj in round i
at switch s

R2s[][] a matrix with each element R2s[j][i] being the rate of
the change of the counter number of all flows at port pj
in round i at switch s

ℵ[][] a matrix of link congestion indicators where an element
ℵ[j][i] equals 1 if there is a link congestion at port pj
in round i, or 0 otherwise

D[][] a matrix of the duration of link congestion, with each
element D[j][i] being the time duration of congestion
at port pj in round i

T [][] a matrix of beginning time of congestion, with each ele-
ment T [j][i] being the first time point when congestion
starts at port pj in round i

S[] an array with each element S[j] being the suspicious-
ness level of flow fj

t[] an array with each element t[j] being the score of flow
fj

of ACK packets generated by the same set of hosts, and UDP
amplification attacks can be detected by analyzing the statistics
of UDP request and response packets.We can build different
algorithms with respect to the attacks in the RADAR detector
to achieve the goal. The details of detecting the traditional
DDoS attacks will be described in Section V.

It is non-trivial to implement such an architecture. Col-
lecting suspicious traffic from a large traffic pool, identifying
sophisticated attacks, and accurately locating the attack traffic
in realtime, are all of high difficulty. In what follows, we will
describe how we realize the key techniques in our design.

IV. DESIGN

In this section, we present the detailed design of the three
components in RADAR. The notation used in the algorithms
are summarized in Table II.

A. RADAR Collector

RADAR collector receives static and dynamic rules to
adaptively retrieve statistics of suspicious flows and maintains
them in the controller, such that (1) RADAR detector can
identify whether an attack exists, and (2) RADAR locator can
identify which flows are the attack traffic. It first passively
monitors network flows according to the static rules in a
coarse-grained manner3, and then actively pulls flow statistics
if flows are detected as suspicious. Meanwhile, it adaptively
issues dynamic flow rules to enforce fine-grained data collec-
tion of suspicious flows (see Section IV-B). Here, a flow is
defined as a set of data packets forwarded by the same flow
entry on OpenFlow switches. It is treated as suspicious if the
traffic anomaly appears in the flow. For example, a significant
increase in the number of SYN packets indicates possible
existence of SYN flooding attacks; a significant increase in the
number of UDP request packets indicates possible existence
of UDP-based amplification attacks (in this paper, we use
DNS amplification attacks as the representative of this type
of attacks); while a significant increase of aggregated flows
indicates possible existence of flooding attacks (either normal
flooding or sophisticated Crossfire attacks). These anomalies
can be captured by leveraging OpenFlow group tables [9],
which will be detailed later.

Note that, although flows from any individual client in
the Crossfire attack are very small, the aggregated traffic
from groups of clients at the targeted links are not (by the
definition of link flooding, this is the attack goal). Thus,
this traffic anomaly composed of aggregated flows can be
suspicious. Since the above traffic anomalies can also be
triggered by normal flows, we cannot simply treat suspicious
flows at this stage as the detection results. Instead, we need
to feed them into the actual detector as detailed in the next
section. Therefore, RADAR collector can efficiently narrow
down and collect suspicious flows by adaptive interactions,
and effectively avoid flow rule table overflow incurred by data
collection.
Mechanism. In Figure 4, we show that RADAR collector first
creates flow rules in SDN switches, which can be generated
according to addresses, ports, or any other fields supported
by the OpenFlow specification [9]. It utilizes dedicated flow
rules to trigger statistics collection. To achieve this in SDN,
it leverages OpenFlow group tables attached to the dedicated
flow rules with the group type SELECT [9] such that packets
can be operated by actions defined in different buckets. Each
bucket in a SELECT group table has an assigned weight,
and each packet is sent to a single bucket. We use weighted
round robin to distribute packets to different buckets. As
shown in Figure 4, two buckets with different weights are
set up in a group table to implement two types actions. The
bucket assigned with a lower weight (e.g., the weight value
of 1% shown in Figure 4) is associated with the action of
packet reporting to the controller, while the bucket with a
higher weight is associated with the action of normal packet

3For example, RADAR uses one static flow rule to monitor all TCP SYN
packets, or uses per-port static flow rules to monitor flows received from each
port to capture suspicious Crossfire traffic.
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forwarding. If a flow has more packets counted by the group
table, the packets will be more likely captured by the bucket
with a lower weight that is associated with the action of
packet reporting than other flows. Here, the weight values
are set according to network configurations to ensure that
traffic increase close to victims will trigger reporting to the
controller [9]. Thereby, RADAR collector can capture and
understand the suspicious flows by analyzing packet-in packets
sent by switches.

After RADAR collector receives packet-in packets, it
records and updates the statistics of flows in Fs. Meanwhile, it
enables active statistics retrieval of such flows, and periodically
pulls the statistics of suspicious flows to update Fs and that
of the corresponding ports in Ps. Such active pull actions are
triggered by sending request messages on flow statistics [9]
to switches. The statistics retrieval intervals τ are set by
corresponding attack detection modules according to the types
of suspicious flows. The detection modules will verify if
attacks exist by evaluating the data retrieved from the collector.
If suspicious flows are not regarded as attack traffic, then
the statistic retrieval will be deactivated by the collector.
The collector notifies the corresponding RADAR modules
according to the types of static collection rules. The details
of the algorithm can be found in [11]. Note that, we cannot
apply sFlow [13] to collect flows since it is unable to monitor
particular types of traffic (e.g., TCP packets with specific
flags). Since packets generated by sophisticated attacks (e.g.,
Crossfire attacks) are low-rate attack and concealed in benign
traffic, it is not easy for sFlow to capture such packets if it
simply samples traffic. However, if sFlow disables sampling,
it will incur significant communication overhead.

B. RADAR Detector

Triggered by RADAR collector, RADAR detector identifies
attacks by performing correlative analysis of the patterns of
suspicious flows collected from different switches, and notifies
RADAR locator to locate accurate attack traffic.
Mechanism. RADAR detector utilizes the statistics of suspi-
cious flows reported from switches and the flow forwarding
path information learned from the topology database, to detect
Crossfire attacks. The attack traffic always shifts among var-
ious victim links, bursting and descending alternately. Recall
Figure 2, a Crossfire attack can be captured if at least two
links in a path are periodically congested and there is at least
one link congested at any particular time. A Crossfire attack

is successful only when all paths connecting to the victims
are congested [18]. However, for efficient detection, RADAR
identifies the attacks after capturing one victim path.

To detect Crossfire attacks, RADAR needs to analyze the
rate of link utilization changes and the correlation between
links and the paths composed of these links. Specially, a
Crossfire attack will be identified if (i) the total number of
link utilization changes reaches or exceeds a threshold β; (ii)
the number of links have been congested in each congested
path (according to the forwarding paths) reaches or exceeds a
threshold α; and (iii) the congestion duration of a path equals
the total congestion duration of links composing this path.
Note that, since Crossfire attacks can only be constructed by
periodically flooding at least two victim links in a path, we set
α to be 2. Also, the traffic shifting frequency cannot be low.
Otherwise, the Crossfire will fail [18]. In order to trade off
between detection efficiency and accuracy, we set β to be 3.
In Section VI, we will show that the impact of β on detection
accuracy.

Algorithm. Algorithm 1 shows the pseudo-code of detecting
Crossfire attacks. It compares the rate of flow statistic changes
on all ports (lines 1-11). If a congestion indicator of a port is
changed from 0 to 1, indicating that a round of traffic shifting
is detected, then the algorithm computes the link associated
with the port according to the topology database (line 3).
Then, the algorithm counts the total number of times that
traffic shifting happens in this link (or the change frequency
of this link, line 4). If this value is larger than β, link l will
be included in the set of suspicious links Ld (steps 5-7).

The algorithm computes the congestion duration of all paths
constructed by the links in Ld and check if the accumulated
duration of congestion caused by such links is equal to the
congestion duration of the path (lines 12-34). If it is true, then
a Crossfire attack is detected. In details, in order to compute
the congestion duration of a path, the algorithm first computes
a set P of all suspicious paths. This is done by investigating
all paths constructed by any possible link in the set of all
suspicious links, according to flow tables maintained by the
controllers (line 13). It then computes the congestion duration
of each path if the number of suspicious links in the path is
larger than α (line 15). Here, since the congestion duration of
links in a path overlaps with each other, to accurately compute
the accumulated duration of the links, it sorts the congestion
time and eliminates all overlapped period during congestion
duration computation (lines 15-25). In an ideal case, if the
accumulated link congestion duration D′[0] computed from
all link congestion duration is equal to the path congestion
duration T ′[sizeof(T ′)− 1] - T ′[0], it indicates a victim path
is identified (lines 26-33) and then the algorithm returns true.
The detector will stop detecting the attack if one victim path
is captured. Note that, since flow statistics stored in RADAR
collector may not be perfectly accurate, in practice, an attack
will be regarded as identified if the difference of duration of
accumulated link congestion and that of path congestion is
bounded by ε, i.e., D′[0] ≥ (1−ε)(T ′[sizeof(T ′)−1]−T ′[0]).
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Algorithm 1 Crossfire Attack Detection
Input: i; Ps = {〈pj , cpj 〉,∀j}; ℵ[][]; D[][]; T [][];
Output: true: attack detected, false: otherwise;

1: for ∀{〈pj , cpj 〉} ∈ Ps do
2: if (ℵ[pj ][i] == 1) && (ℵ[pj ][i− 1] == 0) then
3: l← get mapping(pj);
4: Fq[l] ++;
5: if (changeFreq[l] ≥ β) then
6: Ld ← Ld ∪ l;
7: end if
8: else
9: continue;

10: end if
11: end for
12: D′ ← ∅; T ′ ← ∅;
13: Pd ← compute paths(Ld);
14: while (path ∈ Pd) do
15: if (|path| ≥ α) then
16: for (l′ ∈ path) do
17: p← get mapping(l′);
18: for (j = 0; j++; j < i) do
19: if (ℵ[p][i] = 1) then
20: k ← mergesort(T ′, T [p][j]);
21: D′[k]← D[p][j];
22: end if
23: end for
24: end for
25: end if
26: for (j = 0; j++; j < sizeof(T ′)) do
27: if ((T ′[j + 1] +D′[j + 1]) > (T ′[0] +D′[0])) then
28: D′[0]← T ′[j + 1] +D′[j + 1]− T ′[0];
29: end if
30: end for
31: if D′[0] ==(T ′[sizeof(T ′)− 1] - T ′[0]) then
32: return true;
33: end if
34: end while
35: return false;

C. RADAR Locator

We have stated that RADAR detector can detect victim
links and paths, but it is still unable to identify which traffic
over such links/paths is really attack traffic. RADAR locator
is responsible to identify such attack traffic. This is achieved
by leveraging adaptive correlation analysis of the rates of flow
statistic changes on each link and victims that are detected by
RADAR detector. RADAR locator identifies flows as attack
traffic if their rates of statistic changes correspond to those of
aggregated flows delivered on victim links. Then, it captures
the attack traffic associated with the detected attacks and
identifies the exact prefixes generating or receiving the traffic.
Note that currently RADAR design identifies and tracks flows
by using source or destination addresses, since in existing
DDoS attacks, either source or destination addresses used in
attack traffic are real. In this paper, we use the source address
field to illustrate how RADAR locates Crossfire attack traffic,
or attackers (/bots). This can be easily extended to any packet
fields enabled by OpenFlow specification [9].
Mechanism. Upon receiving an alarm from the detector,
RADAR locator is triggered to locate attack traffic according
to the attack type identified. Initially, the locator does not have
any sense of what are the attack flows. Therefore, it regards all
addresses as suspicious source addresses of attack flows (i.e.,
all flows are suspicious). Such addresses can be categorized
according to their prefixes4. Then we use correlation analysis
to determine which prefix(es) are possible to generate the

4In our algorithm, we use a general form of prefix where its length can be
any integer between 0 and 32.

attack traffic, so we can shrink the size of the set of suspicious
flows. By multiple rounds of analysis, we will obtain fine-
grained visibility on the flows and finally identify all source
addresses of attack traffic.

In order to achieve this, we utilize multibit tries [21]5,
each trie representing a particular type of attack. Let us
focus on a particular trie for Crossfire. Each node in this trie
corresponds to a prefix, recording statistics of flows, whose
source addresses match the prefix, and statistics of the ports
delivering these flows. To locate Crossfire attack flows, when
an attack is identified, RADAR locator first constructs a trie
with only the root node corresponds to the default address
000/0, and generates a flow rule where the source address
field is set to be the prefix represented by the root node 000/0
to tracks all flows in the network6. Note that, 000/0 indicates
an address space covering all IP addresses and it can be split
into different lengths of address blocks according to a splitting
rate. For instance, an address space 000/0 can be split into four
blocks with a splitting rate 2, and then four address blocks with
prefix length 2 are generated, i.e., 000/2, 064/2, 128/2, and
192/2. Later, we will expand the trie, i.e., 000/0 will be split
and children nodes will be created as leaf nodes to attach to
the root node (see Figure 5(a)).

RADAR locator will send dynamic flow rules to the collec-
tor so that the statistics can be received from the collector and
updated periodically. Correspondingly, the statistics associated
with nodes in the trie will also be updated. Meanwhile,
RADAR locator analyzes the updated statistics associated with
each leaf node. If a prefix associated with a leaf node generates
flows exhibiting the flow pattern of Crossfire attack, i.e., flows
generated by the prefix change proportionally with respect
to that on the victims, the prefix associated with the node
will further be split to longer prefixes. Each newly generated
prefix will be associated with a new child node attached to
the original node. Meanwhile, a new flow rule associated
with each new prefix is issued to the collector to monitor
the corresponding traffic. The splitting procedure repeats until
the maximum splitting limit is reached. The round of prefix
splitting (or trie expansion) is controlled by the prefix splitting
rate. Thereby, by periodically expanding the trie and splitting
the prefixes associated with the existing nodes into longer
prefixes, RADAR locator captures the attack traffic associated
with longer prefix lengths.

Flows whose statistics exhibit the attack pattern associated
with leaf nodes will be regarded as attack traffic. The attack
traffic will be blocked by issuing OpenFlow meter table
rules [9] attached to the locating rules that are matched by the
traffic. Ideally, RADAR can locate a host with the prefix with
length 32, i.e., an IP address. However, in practice, we observe
that the probability that benign traffic matches the locating
rules with various specified fields is low as long as the prefix
specified in the rules is long enough (e.g., 24). Therefore, we
set the maximum prefix length to be 24 in order to achieve a
good tradeoff between detection accuracy and detection delay.

5Multibit tries are similar to traditional tries, but they allow nodes to have
different numbers of children (see Figure 5).

6In the rest of this section, flow rules refer to dynamic rules to locate attack
flows.
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Note that, detected prefixes may still generate benign traffic
whose packet fields by chance match the meter table rules
even if the prefix length limit is 32. To mitigate the impact on
benign traffic, RADAR locator only sets limits for each flow
in meter tables instead of directly dropping flows such that it
allows bots to generate a very limited number of packets. In
Section V, we will discuss a fine-grained approach to throttling
attack flows.
Algorithm. Algorithm 2 shows the pseudo-code of locating
attack traffic. It first updates the trie with new received
statistics (line 1). For each flow, it searches the port that
delivers the flow (line 3). If the rate of the change of the current
link is higher (or lower) than that in the last statistics retrieval,
the suspiciousness of the corresponding prefix S[fj ] increases
(or reduces) by the rate of the change (lines 4-7). It computes
the depth d of the trie (lines 10) and performs a breadth
first search on all nodes in the trie, recording the statistics
of prefixes in set Flist (line 12). The locator deactivates the
nodes where the flow statistic does not change proportionally
with the link statistics and removes them from the set FList,
so their offspring nodes will not be visited either. Note that
such nodes and their offsprings will be activated and visited
during later rounds of tree search.

For nodes in FList, the algorithm computes the values of
ζ-th percentile among flow statistics of nodes in the same
level of the trie, i.e., Count. Here, ζ-th percentile ensures that
flows accidentally matching locating rules will be excluded
from further analysis. In our experiments, we observe that
the impact of ζ on the locating performance does not vary
significantly if ζ ∈ [0.01, 0.1]. For simplicity, we set ζ to
0.1. Then the algorithm examines the flows associated with
each node of that level, If S[fj ] is larger than Count, i.e.,
the flow correlates with the aggregated traffic, the score of
flow fj increases by 1 (line 22). Here, a score of a flow
indicates the suspiciousness of the flow. If the score is larger
than β, then the flow associated with the prefix will be blocked
by issuing a filter rule with the prefix in OpenFlow meter
tables [9] (line 24). If the score is less than β and the length
of the prefix associated with the flow is shorter than the
maximum splitting length, then the prefix will be split again.
Meanwhile, a set of new nodes will be created and updated in
the trie, and the corresponding locating rules are generated to
replace the rules associated with flow fj (lines 26-27). Note
that, scores measure the times of the flow shifting, while the
suspiciousness is the total amount of changes in statistics.

D. Illustration

Let us recall the example in Figure 2, and use it to illustrate
how RADAR detects and locates a Crossfire attack. Assume
a static flow rule and a group table are installed in the switch
between A and B, where the source address field is set as
0.0.0.0/0 to count all forwarded packets. At a particular time,
the hosts with source addresses 32.0.0.1/24 and 240.0.0.1/24
generate traffic to the decoy servers and congest A and B,
respectively. The group table receives the statistics for flow
rules, and will capture the flows and notify the controller
by generating packet-in packets. Thereby, RADAR collector
understands that these flows are suspicious. It will periodically

Algorithm 2 Locate Attackers
Input: root; Fs = {〈fj , cfj 〉, ∀j}; Ps = {〈pj , cpj 〉, ∀j};R1s[][];R2s[][];

S[]; t[];
Output: S[];

1: update trie(root, Fs, Ps, R1s, R2s);
2: for ∀{〈fj , cfj 〉} ∈ Fs do
3: p← locate port(fj);
4: if (R2s[p][i] > R2s[p][i− 1]) then
5: S[fj ]← S[fj ] +R1s[fj ][i];
6: else
7: S[fj ]← S[fj ]−R1s[fj ][i];
8: end if
9: end for

10: d← compute depth(root);
11: for (k = 0; k ≤ d− 1; k + +) do
12: Flist← BFS(root, k);
13: for (∀nd ∈ Flist) do
14: if (!flow port correlate(nd)) then
15: deactivate descendants(nd);
16: remove(nd, Flist);
17: end if
18: end for
19: Count← calculate percentile(Flist, ζ);
20: for (∀nd ∈ Flist && fj associated with nd) do
21: if (S[fj ] ≥ Count) then
22: t[fj ]++;
23: if (t[fj ] == β) && (get prefix len(fj ) > Γmax) then
24: block(fj );
25: else if (get prefix len(fj ) < Γmax) then
26: split(get prefix(fj ));
27: create children(nd);
28: end if
29: end if
30: end for
31: end for
32: return S;

pull the statistics of the flows and that of the ports of switches
forwarding these flows, and feed the data to RADAR detector.

After receiving the statistics, the RADAR detector starts
analyzing the data. As shown in the right part of Figure 2,
flows generated by hosts 32.0.0.1/24 and 240.0.0.1/24 match
the patterns: (1) the total number of changes on link utilization
on A and B exceeds 3; (2) the number of links in the path is 2;
and (3) the congestion duration of the path is equal to the total
congestion duration of A and B. Thus, the detector sends an
alarm to RADAR locator, i.e., a Crossfire attack is detected.

RADAR locator starts locating attack traffic by creating
a trie set a root node 000/0 and issuing a flow rule as-
sociated the node to the switches that have detected con-
gestion. It will detect that the statistics associated with the
trie node exhibit attack pattern. Thereby, prefix 000/0 will
split into 2i blocks where the splitting rate i is set as 2
(see Figure 5(a)). Meanwhile, RADAR locator issues new
locating flow rules corresponding to the new prefixes to track
the corresponding flows. Hence, flows generated by hosts
32.0.0.1/24 and 240.0.0.1/24 will be monitored by the flow
rules with source prefixes 000/2 and 192/2, respectively.
After receiving updated statistics, assume the flow generated
by host 240.0.0.1/24 first exposes the attack pattern, then
the trie will be expanded by splitting prefix 192/2 with
the same splitting rate into four prefixes (see Figure 5(b)),
and the new rules are issued via RADAR collector to count
the corresponding flows. Similarly, if a flow exhibits attack
pattern, the trie will be further expanded (see Figure 5(d)).
For ease of presentation, we assume that the limit of prefix
splitting is 4. In reality, RADAR will eventually determine the
prefixes with the maximum length permitted that generate such
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Fig. 5. RADAR locator gradually splits prefixes associated with the nodes in the trie such that it can effectively locate nodes associated with the prefixes that
generate the attack traffic: (a) a trie with four split prefixes; (b) node of 192/2 is split into four child nodes since the traffic generated by the prefix exhibits
the attack pattern; (c) the new generated child nodes will be inactive if their traffic does not exhibit the attack pattern; (d) node of 000/2 is further split since
the traffic associated with the prefix match the attack pattern. It can be applied to track prefixes associated with the victims receiving attack traffic.

attack traffic. RADAR locator issues a meter table RATE:5 and
attaches it to the locating rule, which allows flows matching
the locating rule to pass five packets per second. Up till now,
the attack traffic is identified, located, and throttled.

V. OPTIMIZATION

In this section, we present some optimizations that we have
implemented.
Scalability. One major possible concern of RADAR design
is its scalability, i.e., whether it can work in large scale
detection. Similar to BROCADE DDoS defense products [12],
[26] and existing SDN-based measurement approaches [23],
[34], RADAR requires dedicated flow rules to monitor flows.
It consumes a small number of flow rules for SYN flooding
and DNS amplification detection (see Section VI), and thus
the scalability is not a big concern. The main challenge is in
sophisticated attacks that may require a large amount of flow
rules. In order to prevent rule explosion, we set limits on the
number of flow rules (which we refer to as the maximum
number of flow rules) that can be used to locate attacks.
Upon reaching the limit, we merge nodes in the trie, so that
the corresponding flow rules will be removed and spaces are
made up for further new splitting. The nodes to be merged
are those whose children nodes all have low suspiciousness.
The merge mechanism is similar to that in [41]. Note that,
intuitively, if we have a reasonably large space for flow rules,
then merge will only happen when all children nodes are really
safe to remove. Our experiments also validate that such merge
mechanism works pretty well in practice. We would point out
that it is very difficult to have an accurate theoretic analysis
on the tradeoff between rule space and rule deletion safety,
and we will leave it in our future work.

We have to emphasize that not all flow rules can be merged,
otherwise it will incur high false positive. Another important
optimization we have implemented in RADAR is a distributed
flow rule placement strategy, i.e., for each flow rule of a
monitored flow, we implement it in only one particular switch
in the packet forwarding path, rather than installing it in
all switches along the path. This mechanism enables that
various flow rules spread in different switches in the path
are non-overlapping and the number of required dedicated
flow rules in each switch is significantly reduced. Similar

strategies for packet filter placement are deployed on the
current Internet [29], which are demonstrated to be effective.
In the experiment section, we will verify its effectiveness.

Note that, although RADAR requires extra TCAM con-
sumption, in most cases, RADAR requires a relatively small
number of TCAM entries compared to the number of TACM
capacities according to our experiment results, in particular
under TCP SYN flooding and UDP amplification attacks (see
SectionVI). The improvements above can effectively reduce
the TCAM consumption incurred by RADAR. Actually, our
experimental results show that RADAR can still effectively
detect attacks if even the number of assigned flow entries for
detection is less than that required for detection. Also, since
RADAR requires each switch to report suspicious flows to
the controllers, the number of flows captured by each switch
is limited, which is demonstrated by our experimental results
(see Section VI.)
Specialization for Traditional DDoS Detection. In order
to detect traditional DDoS attacks, e.g., SYN flooding and
DNS amplification attacks, we can leverage a similar corre-
lation analysis technique discussed in Section IV-B. Different
from Crossfire detection, SYN flooding can be detected by
computing the ratio of the number of ACK packets to SYN
packets during a detection interval. If the number is close
to 1, SYN flooding attacks are detected. Also, if the ratio
of the average sizes of DNS response packets to that of
DNS request packets significantly deviates from a threshold,
DNS amplification attacks are detected. Note that, according
to OpenFlow specification [9], OpenFlow switches can count
the number of their interested packets (e.g., the number of
TCP SYN/ACK packets and the number of DNS request
packets) and the total sizes of different types of these packets.
Therefore, RADAR can directly retrieve the required numbers
from the corresponding switches. In order to detect TCP SYN
flooding and DNS amplification attacks, RADAR only requires
two dedicated flow rules to monitor each type of flows with the
particular port or flag information. For example, RADAR uses
two rules to monitor TCP packets with SYN and SYN/ACK
flags, respectively, and uses two rules to monitor DNS packets
with source port 53 and destination port 53, respectively.
Therefore, RADAR does not require more granular flow rules
in monitoring or blocking attack flows. Note that, attack
packets may be with fake source or destination addresses.
Thus, it is not possible to track the exact attack packets by
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using more granular flow rules. Instead, we use the max-min
fairness technique to achieve fine-grained packet dropping and
throttle attack packets.

Note that, as we have discussed before, RADAR locator is
designed to locate various types of attacks by issuing different
types of locating rules, e.g., locating rules specified with
DNS protocol number are used to detect DNS amplification
attacks. By specializing it to locate such SYN flooding and
DNS amplification attacks, RADAR is specialized to work for
traditional DDoS attacks. We will illustrate this functionality
in our experiments.
Parellalization of Detecting and Locating Attacks. In order
to reduce the delay of locating attackers, RADAR combines
phases 2 and 3, i.e., detecting attacks and locating attack
traffic, so as to locate different attackers or victims during
traffic correlation analysis. In other words, RADAR builds the
trie and splits nodes in advance, and periodically updates the
trie during detecting attacks.
Fine-Grained Packet Dropping. In the basic RADAR design,
we leverage OpenFlow meter tables to throttle attack traffic
according to its addresses. However, the meter tables may
falsely drop the benign traffic if such traffic matches the
features of attack traffic by accident. To address this issue,
RADAR locator is extended to incorporate a port-based max-
min fairness technique to drop the attack traffic. It is different
from the traditional max-min fairness technique. It enforces
packet throttling strategies according to all statistics aggre-
gated on ports. RADAR locator installs a traffic throttle by
enforcing a meter table at each OpenFlow port. For those
packets that match the features of the attack traffic, e.g., traffic
whose source and destination addresses match that of Crossfire
attack traffic, the throttle will limit the rate of such packets to
be forwarded by the port at switches. Traffic that exceeds the
rate limit will be dropped. The underlying rationale is that
most packets matching the features of the attack traffic are
malicious and they can be regarded as the attack traffic if
the number exceeds the throttle at each port. Thereby, port-
based max-min fairness significantly increases the accuracy of
dropping attack flows compared with the traditional max-min
fairness.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance and overhead
of RADAR with Mininet and hardware testbed experiments
with real CAIDA trace [2], and simulation-based experiments
with the real trace.

A. Prototype and Experiment Setup

We implement RADAR in an open source controller, Flood-
light [5]. Currently we provide detection modules for link
flooding (including Crossfire), SYN flooding, and DNS ampli-
fication attacks. In particular, we use a real CAIDA trace [2]
and replay it as background traffic. The traces were collected
on a backbone link of a Tier-1 ISP in Chicago on Febru-
ary 2015. We conduct microbenchmark and macrobenchmark
experiments to evaluate the performance of RADAR. The
microbenchmark experiments aim to study the effectiveness

and performance of RADAR with different parameters under
various attacks, while the macrobenchmark experiments aim to
demonstrate the feasibility of RADAR in hardware OpenFlow
switches and evaluate its performance in a large scale.

We measure the effectiveness of RADAR and its overhead
by constructing different DDoS attacks: (1) Crossfire attack
by allowing different bots to send stealthy and low rate attack
traffic according to the description of the attack [18]; (2) SYN
flooding attack by sending only SYN packets with spoofed
IP address; (3) DNS amplification attack by sending DNS
requests with fake source IP addresses.
Microbenchmark experiments: We use Mininet to perform
various experiments. In Mininet experiments, we construct
various attack traffic with the real Internet 2 topology [6] on
Ubuntu server 14.04 with an 8-core 2.8 GHZ Xeon CPU,
128GB RAM. We assign different numbers of bots to the
switches so as to generate different attack traffic. Due to
limitation of computation resources, we are unable to set up a
large number of bots. Here, we use two strategies to select bot
addresses and use these addresses to generate attack traffic: (1)
HN strategy: We randomly select addresses in different class
C prefixes as bots addresses and randomly choose different
numbers of bot nodes in the prefixes. The number of bot
nodes in a prefix varies between 0 and 254. According to
existing studies, real bot distributions exhibit a high degree
of clustering [18], so these addresses can be aggregated to a
small number of prefixes. (2) SA strategy: We randomly select
class C prefixes and select different numbers of addresses in
each class C prefix that are not aggregated at all. The reason
is that this strategy introduces the heaviest overhead. In both
strategies, the number of class C networks is set to be 10,
25, 50, 75, and 100, respectively. The total number of bots
varies between 1 and 19,125. For simplicity, in the following
experiments, we use bots to indicate a set of bots with the
same prefix.
Macrobenchmark experiments: We use real OpenFlow
testbed experiments with real traces and large scale trace-
based simulations to evaluate the performance. We replay
the CAIDA trace as background traffic and construct the
Crossfire attack traffic. In real testbed experiments, we use two
Pica8 P-3297 OpenFlow switches [10] to forward all traffic
including attack traffic and measure if RADAR with these
two switches can effectively capture and defend against the
attacks. For simplicity, we use HN strategies to select bot
addresses and use them to generate attack traffic. Since the
Pica8 P-3297 switches cannot support a large number of flow
rules, the number of class C prefixes is set to 50, 100, 500,
1000, and the number of class C prefixes in the large scale
simulations is set to be 1,000, 2,000, 5,000, 10,000, 50,000,
and 100,000, respectively. Moreover, note that the Ethernet
speed of hardware switches in our testbed experiments is
1 Gbps and the packet rate in the CAIDA trace is up to
10 Gbps. We cannot directly replay the trace, but replay
10% of the data per second by using TCPreplay. We directly
replay the trace in the simulation-based experiments. As we
observe, SYN flooding and DNS amplification attacks can
be accurately captured by RADAR. We do not present the
results in this paper due to page limit. Note that, according
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to our experimental results, the size of the networks does not
impact the detection delays of RADAR but the overhead of
RADAR. A small network topology incurs more overhead on
switches since they require more flow rules in each switch to
track attack flows. Fewer switches, more overhead on them.
Therefore, in our experiments, we evaluate the performance of
RADAR in the extreme case, i.e., the network only includes
two switches.

We use the following metrics to measure the performance.
• Accuracy: We use the metrics of true positive rate (TPR),

false positive rate (FPR), and mitigation rate (MTR) to
measure the detection accuracy. In particular, we use
MTR to measure the percentage of blocked attack traffic
volume in all attack traffic flows.

• Delay: Delay refers to the time duration from the begin-
ning of the attack to the time point it is located.

• Overhead: We measure the number of extra flow tables
used to detect attacks under various attack scenarios with
and without flow rule limits. Since the number of static
rules is very small, we mainly evaluate the consumption
of dynamic rules.

B. Microbenchmark Experiments

We use Mininet experiments to conduct experiments with
a real network topology, i.e., the Internet 2 topology. Our
goal is to measure the impact of the number of bots and
different settings of RADAR on the accuracy and overhead
of the detection.
Experiment 1: Impact of ζ on accuracy. We evaluate
detection accuracy when ζ varies. Figure 6 and 7 show the
impact of ζ on TPR under HN and SA strategies, respectively.
We observe that, when ζ increases, TPR decreases under
various prefix splitting rates. In particular, under SA strategy,
when ζ is larger, the number of searched trie nodes reduces
and then scores of the nodes associated with attack flows are
much smaller than real scores. Therefore most of the attack
flows are falsely excluded during traffic locating. However,
RADAR achieves more than 95% TPR if ζ is set less than
0.01 under both strategies when the splitting rates are set to
be 1, 2, and 4. TPR with splitting rate 8 under SA strategies
is almost zero because RADAR does not have enough flow
rules to locate new captured suspicious flows.

We measure the impact of ζ on FPR. We observe that
FPR under the two strategies is rather low. Figure 8 shows
FPR under SA strategy. The worst FPR is around 5% when
ζ = 0 since benign traffic with traffic burst is counted by
mistake. Here, ζ can be any real number between 0 and
0.1. We do not observe FPR when ζ is set to other values
in this experiment. Moreover, we also measure MTR with
various ζ values (see Figures 9). The distributions of MTR
under various splitting rates is very similar to that of TPR
since RADAR can effectively drop detected attack flows. MTR
achieves more than 98% when ζ is less than 0.01. In the
following experiments, we set ζ to be 0.01.
Experiment 2: Impact of splitting rates on accuracy. We
measure the impact of splitting rates under two bot distribution
strategies. TPR under the two strategies is very similar (see

Figures 10 and 11). The only difference is that using SA
strategy, RADAR achieves much worst TPR when the splitting
rate is set as 8. The reason is similar to what we have stated
above. In the following experiments, we will not include
the experimental results with splitting rate being 8. FPR is
negligible, and MTR is similar to TPR. We do not repeat the
results here.
Experiment 3: Impact of splitting rates on overhead.
In this experiment, we evaluate the number of flow rules
consumed for locating bots. As shown in Figure 12, under
HN strategy, on average, RADAR consumes less than 1,000
flow rule entries under attacks from various numbers of bots.
However, RADAR consumes much more flow entries when
using SA strategy (see Figure 13). In particular, for attacks
with 100 prefixes, it consumes more than 5,000 flow entries.
The number can be constrained by setting a limit, while
not impacting the accuracy (see Experiment 7). Actually, the
number of flow rule entries in commodity OpenFlow switches
can be up to more than 160,000 [7]. Therefore, we believe
5,000 flow entries for Crossfire detection is acceptable. We
will evaluate the overhead with DDoS detection at a larger
scale in the macrobenchmark experiments.

We also evaluate the communication overhead of collecting
statistics. As shown in Figure 14, under Crossfire attacks,
initially the sizes of packets delivering the statistics increase
over time since RADAR gradually finds more and more
suspicious flows. At the 120th second, RADAR detects all
attack traffic. But it still enables active statistics retrieval to
ensure that no more bots can be detected. After the 200th
second, the number of packets starts decreasing. The most
incurred communication overhead is only 0.25 MB/s. In fact,
we observe RADAR incurs similar overhead under various at-
tack scenarios. Therefore, we can conclude the communication
overhead does not exacerbate network performance.
Experiment 4: Detection delay under attacks with different
settings. In this experiment, we evaluate the detection delay
when the splitting rate set to be 4 and the maximum number
of flow rules is set to be 5,000, where SA strategy is enforced.
As we observe in Figure 15, the detection delay is stable
when the numbers of bots vary. More than 90% attack traffic
is detected within 90 seconds no matter how many bots
participate in the attacks. Since most of the attack traffic can be
correctly damped by RADAR, RADAR can effectively throttle
the traffic within 90 seconds. Actually, as we observed in
Figure 15, RADAR detects more than 50% attack traffic within
60 seconds. Therefore, the impact of the attack is eliminated
or significantly mitigated within one minute.

Also, we measure detection delay where the maximum
number of flow rules is set to be a smaller value, i.e., 2,000.
We choose three duration of shifting the target links as 10,
20, and 30 seconds. We observe that if a small number of
bots participate in the attack with 10 seconds link shifting
duration, and RADAR detects most of the attack traffic within
100 seconds that is the product of the link shifting duration and
the shifting round (see Figure 16). The delays are reasonable
since it takes time for RADAR to split flow rules to spot
attack traffic and confirm the attacks by at least β rounds of
link shifting. However, when the number of bots reaches 100,
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Fig. 6. Experiment 1: Impact of ζ on
TPR using HN.
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Fig. 7. Experiment 1: Impact of ζ on
TPR using SA.
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Fig. 8. Experiment 1: Impact of ζ on
FPR using SA.
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Fig. 9. Experiment 1: Impact of ζ on
MTR using HN.
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Fig. 10. Experiment 2: Impact of
splitting rate using HN.
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Fig. 11. Experiment 2: Impact of
splitting rate using SA.
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Fig. 12. Experiment 3: Flow rule
consumption using HN.
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Fig. 13. Experiment 3: Flow rule
consumption using SA.
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Fig. 14. Experiment 3: Communica-
tion overhead of statistics collection.
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Fig. 15. Experiment 4: CDF of detec-
tion delays with splitting rate being 4.
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Fig. 16. Experiment 4: CDF of de-
tection delays with 2000 flow rules.
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Fig. 17. Experiment 5: TPR under the
DNS amplification attacks.

it needs to take around 160 seconds to detect 90% of attack
traffic. The reason is obvious: more flow rules can monitor and
locate more attack flows. The detection delays increase with
respect to the link shifting duration that are controlled by the
attackers. However, the link shifting duration will not be very
long. Otherwise, the attacks will be captured and treated as
the traditional flooding attacks. RADAR can drop the detected
the attack traffic in realtime. Therefore, we can conclude that
RADAR can effectively defend against and throttle DDoS
attacks in realtime, in particular, Crossfire like sophisticated
DDoS attacks.

Experiment 5: Detection overhead and delay under tra-
ditional DDoS attacks. We measure the detection delay
under SYN flooding attacks and UDP-based amplification
attacks (with nine reflectors) with 100 bots. Here, we use
DNS amplification attacks as a representative of the UDP-
based amplification attacks. Figure 17 shows that RADAR
achieves 100% TPR with various splitting rates. In particular,
it only requires at most 50 flow rules to detect all attack
flow. We observe a similar result in SYN flooding detection.
Figure 18 and 19 illustrate the delays of SYN flooding and
DNS amplification detection, respectively. Since RADAR can
easily detect the attack traffic by correlation analysis, it is not
surprising that it only takes around 15 seconds to detect all
attack traffic, which is not impacted by the maximum number
of flow rules. Therefore, we can conclude that RADAR can
efficiently detect the traditional DDoS attacks above with a
very small overhead.
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Fig. 18. Experiment 5: Delays of
detecting SYN flooding attacks with
different rates.
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Fig. 19. Experiment 5: Delays of
detecting amplification attacks with
different rates.

C. Macrobenchmark Experiments

Now we run real testbed experiments and real-trace based
simulations to conduct macrobenchmark experiments. Our
goal is to demonstrate the feasibility of RADAR with real
hardware OpenFlow switches and measure the impact of
different settings of RADAR on attack detection accuracy and
overhead at a large scale.
Experiment 6: Impact of the maximum number of flow
entries on accuracy on the testbed. In this experiment, we
evaluate the detection accuracy under attacks from different
numbers of bots. As shown in Figure 20, TPR is impacted
by the number of consumed flow rules. When the number of
flow rules reaches 2,000, RADAR achieves more than 85%
TPR. We do not observe any FPR no matter how many flow
rules are used to detect attacks (see Figure 21). Figure 22
shows the impact on MTR. After detecting bots, RADAR can
accurately capture the attack traffic from the bots. Since some
bots generate more attack traffic than other uncaptured bots,
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Fig. 20. Experiment 6: Impact of flow
rules on TPR on testbed.
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Fig. 21. Experiment 6: Impact of flow
rules on FPR on testbed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 500  1000  1500  2000

M
T

R

The maximum number of flow entries

Bots 10

Bots 50

Bots 100

Bots 500

Bots 1000

Fig. 22. Experiment 6: Impact of flow
rules on MTR on testbed.
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Fig. 23. Experiment 7: CDF of de-
tection delays on testbed.
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Fig. 24. Experiment 7: CDF of de-
tection rate with 10 bots on testbed.
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Fig. 25. Experiment 7: CDF of de-
tection rate with 50 bots on testbed.
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Fig. 26. Experiment 7: CDF of de-
tection rate with 100 bots on testbed.
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Fig. 27. Experiment 7: CDF of de-
tection rate with 500 bots on testbed.
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Fig. 28. Experiment 8: CDF of de-
tection delays on testbed.
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Fig. 29. Experiment 9: The consumed
flow rules on testbed.
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Fig. 30. Experiment 10: Impact of
splitting rate in large scale detection.
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Fig. 31. Experiment 11: Flow rule
consumption in large scale detection.

MTR is higher than TPR. In particular, MTR almost reaches
100% even though around 10% bots are not captured.

Experiment 7: Detection delay under attacks with different
settings on the testbed. We measure the detection delays
under the attacks from different numbers of bots with different
flow rules. In this experiment, we set the link shifting duration
to be 20 seconds. The detection delays are impacted by the
duration of link shifting in the Crossfire attacks, and the de-
tection delays are proportional to the link shifting duration. In
other words, most of the bots are captured within around 200
seconds no matter how many bots are involved to construct the
attacks (see Figure 23). We also evaluate the detection delays
with different number of flow rules that are used to detect
attacks. As illustrated in Figure 24, 25, 26, and 27, under the
attacks from different numbers of bots, the number of flow
rules does not significantly impact the delay rates, though the
detection delays slightly vary. Moreover, the deviations among
different numbers of flow rules are not so large. Note that,
since under the attacks from 500 bots, as we discussed above,
the detection delays will be longer if the used flow rules are
less than 2000. RADAR cannot track attack traffic from 500
bots at the same time if it is only allowed to use 500 flow
rules.

Experiment 8: Detection delay with a different splitting
rate. In this experiment, we evaluate the detection delay with
respect to different splitting rates. RADAR captures more than
85% bots with different splitting rates. Figure 28 shows CDF
of detection delays under the attacks from 500 bots. Since it
takes more time to split flow rules and capture bots when the

splitting rate is set to 1 or 2, the detection delays with these
two splitting rates are slower than that when the splitting rate
is equal to 4. Therefore, in order to quickly capture bots and
throttle DDoS attacks, it would be better to reserve more flow
rule space for RADAR. However, as we discussed above, both
can still successfully capture most of the bots no matter which
splitting rates RADAR uses.
Experiment 9: Detection overhead on the testbed. Since we
observe that the communication overhead incurred by RADAR
in microbenmarck experiments is relatively stable and small
(see Section VI-B), in this experiment, we focus on evaluating
the overhead of flow rules. As illustrated in Figure 29, the
required flow rules for DDoS detection is not proportional to
the increase in the number of bots. The increase in the number
of the flow rules is slower than that of the number of bots. In
Experiment 6, we will evaluate the detection overhead under
large scale attacks.
Experiment 10: Detection accuracy with various splitting
rates in large scale detection. In this experiment, we mea-
sure the detection accuracy when the number of bots varies.
Figure 30 shows that under various splitting rates, on average
RADAR achieves more than 80% bots. In particular, when the
splitting rate is 4, RADAR detects more than 90% bots. Note
that here each bot indicates a set of bots, where the number
of detected bots can reach 25 million. Therefore, RADAR is
still effective when Crossfire detection is on a large scale.
Experiment 11: Impact of splitting rate on overhead
in large scale detection. We observe when the number of
bots increases, the required flow rules increase as well (see
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Fig. 32. Experiment 12: Flow rule
consumption on testbed.
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Fig. 33. Experiment 12: Flow rule of
each switch in large scale networks.

Figure 31). When the number of bots reaches 10,000, the
number of rules is more than 10,000. It seems to be a large
value, but note that the increase in the number of consumed
flow rules is slower than that of the number of bots, so
our mechanism is scalable. In particular, Crossfire attacks are
mostly constructed in the Internet backbone [18] that appears
to be over-provisioned with high performance switches. The
switches should be able to absorb the increase of flow rules.
Moreover, Crossfire detection is the extreme case for DDoS
detection, and we considered an extreme case where there
are 10,000 bots, so the consumed flow rules should be much
more than normal cases. Overall, the cost of our mechanism
is reasonable. We will evaluate the overhead of each switch
with real topologies.
Experiment 12: RADAR Scalability. Finally, we evaluate the
scalability of RADAR in the experiments. Since we cannot
construct complete topologies of large-scale networks in our
experiments, we use measured average path lengths in different
ISP networks [25] to compute the consumed flow rules in each
switch. We compute average flow rule consumption in each
switch by dividing required flow rules among switches in the
path. Figure 32 illustrates the average number of flow rule in
each switch on our testbed. We observe that the number of
flow rules required in each switch is far below 1K. Moreover,
we use three typical ISP networks (i.e., Sprint, TeleDanmark,
and Level-3 networks) to validate scalability in large-scale
detection. The average path lengths of these networks are 12,
15, 25, respectively. As shown in Figure 33, on average, the
flow rules required in each switch in these networks are around
6.9K, 5.5K, and 3.3K, respectively, when the split rate is set
to be 4. The number of flow rules will be much smaller if
the split rate is less than 4. Therefore, the required number
of flow rules are significantly reduced when using distributed
flow rule installation, and such cost is affordable for real-world
commercial COTS switches (e.g., [7]). In particular, these flow
rules are still able to detect and throttle very large-scale DDoS
attacks by a botnet composed of more than 100K bots, e.g.,
the recent DDoS attacks on Dyn DNS services [4]. In future
work, we will investigate more optimal flow rule placement
such that the number of flow rules can be further reduced.
Remark: As shown in the experiment results above, RADAR
can effectively detect attacks by correlation analysis even if
each attack flow is very small. Specially, RADAR makes a
trade-off between detection delays and overhead.

VII. RELATED WORK

DDoS detection in IP networks has been extensively stud-
ied [1], [22] via various approaches, e.g., traceback, pushback,
puzzle actions, and profile-based defense. Such approaches

are not generally easy to be deployed because they need
complicated operations of the data plane and/or collaborations
of ISPs. Such approaches, though interesting to academia, are
often too complicated for the industry to apply. Instead, current
industrial solutions [3] usually rely on expensive hardware
appliances, increasing cost and packet forwarding delay. These
traditional approaches cannot effectively detect the current
sophisticated DDoS attacks that are launched with small and
short-lived attack traffic.

Recently, SDN opens new doors to defend against DDoS at-
tacks. A number of researchers have done pioneer and insight-
ful works based SDN or software-defined approaches [15],
[23], [32], [33]. In particular, Xu et al. [32] detect DDoS
attacks by traffic monitoring in SDN. Fayaz et al. [15] redirect
traffic to virtual machines in datacenters to detect DDoS at-
tacks. Yu et al. [33] developed a software-defined measurement
framework to implement efficient network measurement. Such
measurement frameworks aim to detect heavy hitters/changes
with iteratively refined traffic monitoring, and attempts show
great potential to better detect DDoS attacks via SDN, while
the limitation is that they are unable to capture flows collab-
orating to construct sophisticated ones like Crossfire.

Up till now, we find three pieces of most closely re-
lated work to ours, all using traffic engineering (TE) ap-
proaches [17], [19], [20] to detect DDoS attacks, (potentially)
including Crossfire attacks. Such pioneer works provide valu-
able insights and great potential on how to address Crossfire-
like attacks. In particular, Lee et al. [19] propose a cooperative
traffic engineering approach via an extra communication proto-
col to detect attack traffic. An obvious overhead is that it needs
adoption of self-defined protocols and cooperations of different
ISPs (and most likely, extra appliances as well). Christons
et al. [20] present an analytic model to capture Crossfire,
providing interesting insights on practical mechanisms design,
however, the paper itself is analytical based and still far away
from practical implementation. Kang et al. [17] leverage SDN
to implement efficient traffic engineering for link flooding de-
tection. One obvious cost is that it requires major modifications
in switches to implement sketch algorithms so as to capture
different flows, and it is unclear how it can be implemented
in today’s SDN switches; meanwhile, it is specifically for link
flooding based attacks, but does not apply for other types like
SYN flooding.

Several machine learning based approaches [24], [31] were
proposed to identify and throttle attacks in SDN. For instance,
Wang et al. [31] leveraged a graphical inference model to
detect attack flows. By leveraging SDN, these approaches can
effectively block identified attack flows in realtime. These
approaches are orthogonal to RADAR. The RADAR detector
can utilize these approaches to detect more attacks in SDN.

VIII. CONCLUSION

We propose RADAR, an architecture aiming to detect var-
ious DDoS attacks via adaptive correlation analysis on COTS
SDN switches. It does not require any modifications in SDN
protocols and switches, nor does it need any extra appliance
to detect attacks. RADAR is able to capture and throttle
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sophisticated DDoS (e.g., Crossfire) attacks in realtime. We
evaluate the performance by experiments based on a real
testbed, and demonstrate that RADAR can effectively and
efficiently detect various attacks within short delays.
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