
Attacking Software-Defined Networks: A First Feasibility
Study

Seungwon Shin and Guofei Gu
{swshin, guofei}@cse.tamu.edu

ABSTRACT
Software Defined Networking (SDN) is an emerging technology
that attracts significant attention from both industry and academia
recently. By decoupling the control logic from the closed and pro-
prietary implementations of traditional network devices, it enables
researchers and practitioners to design new innovative network func-
tions/protocols in a much easy, flexible, and powerful way. How-
ever, till today, SDN is still not well investigated by the security
community. In this paper, for the first time we show a new attack
to fingerprint SDN networks and further launch efficient resource
consumption attacks. This attack demonstrates that SDN brings
new security issues that may not be ignored. We provide the first
feasibility study of such attack and further discuss possible defense
techniques and insights.

1. INTRODUCTION
Very recently, Software Defined Networking (SDN) has quickly

emerged as a new promising technology for future networks. With
the separation of control plane from data plane thus enabling the
easy addition of new, creative, powerful network functions/protocols,
SDN has attracted significant attention from both academia and in-
dustry. In academia, since the publication of OpenFlow [4], which
is a key component to realize the SDN concept, many research
ideas based on SDN/OpenFlow have been proposed (and still go
on) (e.g., [10] [3]). In industry, SDN is widely considered as the
new paradigm for future networks, and many companies are de-
ploying or plan to deploy such technology in order to strengthen
their network architectures, reduce operational cost, and enable
new network applications/functions.

While SDN is promising, one important aspect is seriously miss-
ing from the community: security. As a very new technology, there
is very little research in investigating the security of SDN, e.g.,
whether SDN brings new security issues. As one of the first step
towards a better understanding of the security of SDN, it is very
important to investigate its attack/threat surface.

In this paper, we demonstrate an effective and efficient attack
against software-defined networks with the knowledge of some ba-
sic characteristics of the SDN technology. Essentially, since the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

control plane is separated from the data plane in a SDN network,
the data plane will typically ask the control plane to obtain flow
rules when the data plane sees new network packets that it does
not know how to handle. By exploiting this key property, our
proposed attack can first fingerprint whether a given network uses
SDN/OpenFlow switches and then generate specifically crafted flow
requests from the data plane to the control plane. This has two ef-
fects: (i) it can make the (logically centralized single-point) control
plane hard to handle all requests (i.e., control plane resource con-
sumption or DoS attack); (ii) the generated fake flow requests can
produce many useless flow rules that need to be held by the data
plane, thus making the data plane hard to store flow rules for normal
network flows (data plane resource consumption or DoS attack).
To demonstrate the feasibility of such attack, we create a new SDN
network scanning prototype tool (named as HFC SCANNER) to re-
motely fingerprint networks that deploy SDN, and this method can
be easily operated by modifying existing network scanning tools
(e.g., ICMP scanning and TCP SYN scanning).

In short, our contributions can be summarized as follows:

• We propose a new fingerprinting attack scenario against SDN
networks - to the best of our knowledge, this is the first work
talking about the network attack for SDN networks.

• We verify the feasibility of the proposed attack with real-time
data - we show that the proposed attack can easily fingerprint
a SDN network and further consume its resources (DoS at-
tack).

• We further discuss possible defense techniques and insights
to mitigate the proposed attack.

2. MOTIVATING EXAMPLE
In a SDN environment, the control plane can dynamically en-

force flow rules when the data plane requires (i.e., reactive mode),
and it enables us to control the network efficiently. However, this
kind of reactive mode control can cause serious problem when there
are too many requests from the data plane to the control plane - we
call this resource consumption attack. To describe this problem
more clearly, we show an example case when a network adminis-
trator uses an OpenFlow controller (for the control plane) and an
OpenFlow switch (for the data plane) to control his network.

When an OpenFlow application enforces a flow rule into a switch,
it needs to specify a condition field (also called the match field) to
describe a network flow that the application wants to control. This
condition field consists of 15 elements [8], and an OpenFlow ap-
plication can determine the level for controlling network flows by
setting each condition field. For example, if an application speci-
fies all elements in a condition field, it will control network flows

with fine-grained level. Likewise, an application can set wildcards
(i.e., don’t care bits) to control network flows with coarse-grained
level.

Usually, legacy network routers (or switches) use some flow rules
with wildcards to control network flows (i.e., coarse-grained level),
and it is very natural because their main goal is to simply deliver
network packets to destinations. It is also applicable when an Open-
Flow application conducts routing functions. Beyond that, we also
want to design interesting and complicated network functions such
as load balancing [14]. In this case, an OpenFlow application will
control network flows in more fine-grained level (e.g., 4-tuples:
source and destination IP address, and source and destination port),
and this could cause flooding attacks targeting OpenFlow switches
and the controller.

To clearly illustrate these cases, we assume that an OpenFlow
application controls network flows by enforcing flow rules defining
4-tuples to perform load balancing. We also assume that this enter-
prise network usually receives 1,000 requests per second, and it is
capable to handle them with the available resource. However, if an
attacker uses 10 bots to send fake TCP SYN requests to this net-
work and each bot creates 100 processes to do this job, then, this
attacker can easily send much more connection requests that can
be handled by the OpenFlow application (whenever an OpenFlow
switch receives a packet that does not match with any flow rules in
a flow table, it will ask the controller). It also happens when even
one host sends connection trials to different ports of a host (i.e., a
kind of vertical scanning), and this scenario is illustrated in Figure
1. If the 10.0.0.1 host sends connection requests to network ports
from 1 to 10,000 of 20.0.0.1 host, it will cause 10,000 flow rule re-
quests to the controller, and it will require 10,000 flow table entries
in the switch.

flow table entries

Controller

10.0.0.1 20.0.0.1

To 20.0.0.1:1

To 20.0.0.1:2

To 20.0.0.1:10000

(1) (2) (10000)

flow rule 1
flow rule 2

flow rule 10000

App

Figure 1: Possible resource consumption attacks to an Open-
Flow switch and a controller

It is a serious problem to both of controllers and switches. In the
case of the controller, it should handle much more requests than
usual, thus, it can face serious performance problems (remember
that a network packet is pending for process by the switch until the
controller gives a flow rule for the packet). The OpenFlow switch
also suffers. It should maintain flow rules for each network packet,
and it can consume the capacity of fixed flow table entries in the
switch. Thus, it is possible that further network packets can not be
handled by the switch or they should wait until the switch clears off
old flow rules. Finally, this kind of attack can consume resources of
the control plane (flow rule handling capacity) and the data plane
(flow rule entries).

3. ATTACK METHOD
In this section, we describe how attackers can fingerprint SDN

networks, and how they can consume resources for SDN easily.

3.1 Assumption and Attack Model
Assumption: Before we describe our attack method, we clarify
two basic assumptions. First, we assume that a target SDN network
is managed by more fine-grained flow conditions (e.g., 4-tuples)
than legacy networks. We believe that this assumption is valid be-
cause most cases people deploy SDN technology to control their
network with micro-level flow rules for efficient management [14].
Second, we assume that an attacker can remotely scan the target
network (e.g., TCP scanning, or even just ICMP scanning). This
is a commonly acceptable assumption because most networks al-
low some TCP connection requests or ICMP (ping) requests from
remote hosts.
Attack Model: Usually, a computer network is modeled with a
graph structure whose nodes are hosts and links are connections.
In addition, a set of linked nodes (hosts) can be considered as a
special purpose network (e.g., an enterprise network), and we call
this a group. In this case, we have two different groups: (i) a group
with SDN technology (we call this SDN-group) and (ii) a group
without SDN technology (we call this non-SDN-group).

Here, our attack can be modeled as follows. First, an attacker
node contacts multiple groups, whose node(s) can be reached by
the attacker node, by sending network probing packets. Second,
the attacker node collects the data samples of response times for the
probing packets. Note that the response time means the time differ-
ence between the time when a node sends a probing packet and the
time when a node receives a response for the probing packet, and
we use this definition for the response time in our paper. Third, the
attacker node conducts a statistical test with collected data sam-
ples, and it will differentiate SDN-groups from non-SDN-groups.
Finally, if the attacker node detects a SDN-group, it conducts a
DoS attack to the SDN-group by sending attack packets. Our at-
tack differs from the existing DoS attacks in that it mainly targets
the data plane and the control plane of SDN instead of end hosts.
In the following sections, we describe each operation of this model
in detail.

3.2 Fingerprinting a SDN network
Since SDN separates the control plane from the data plane, the

data plane asks the control plane to get a flow rule when there is
no flow rule to handle this packet (we call this New-Flow). In this
case, the data plane needs to wait until it receives a flow rule from
the control plane (usually, we call this flow setup time), and it can
be considered as a kind of additional delay compared with the case
of legacy network devices, in which the control plane and the data
plane are integrated into a single box. If the data plane receives a
flow rule, it does not need to ask the control plane when it handles
network flows that are matched to the condition fields of the flow
rule (we call this Existing-Flow).

If a client contacts a SDN network, this client will face these two
cases. Here, the important part is that this client will observe differ-
ent response times when the client sends packets to a SDN network,
because the flow setup time can be added in the case of New-Flow
compared with the case of Existing Flow. To describe this more
clearly, we simply formalize the response time that is observed at a
client side. First, we define the response time for the Existing-Flow
case as α, and flow setup time for β. In addition, for brevity, we de-
fine the response time for the case of New-Flow and Existing-Flow
as T1 and T2 respectively, and they can be represented as follows.

T1 (w/o flow rule in the data plane) = α + β
T2 (w flow rule in the data plane) = α

In this case, if an attacker can clearly differentiate T1 from T2,

he can fingerprint a SDN network. However, an attacker will still
face two following challenges: (i) how to collect T1 and T2 values
and (ii) how to know whether T1 values are different from T2 or
not.
Header Field Change Scanning: The first challenge can be ad-
dressed by our new network scanning method, header field change
scanning (HFC scanning) that scans networks as changing network
header fields. When this scan tool collects T1 and T2 values, it
uses the characteristics of SDN networks, and that is the data plane
in a SDN network asks the control plane if it does not have any flow
rules to handle a new incoming network flow. It implies that if an
attacker knows the condition for a flow rule managing a network,
he can send a packet that lets the data plane ask to the control plane,
and it finally helps the attacker collect T1 and T2 values easily.

To do this, our scanning method should attempt to understand
(reverse engineer) the condition of the flow rules managing the net-
work. The condition can be considered as the granularity of net-
work flow rules enforced by a SDN application. For example, if
a SDN application manages a SDN network by enforcing 4-tuples
flow rules (i.e., source and destination IP address, and source and
destination port), then, the condition of a flow rule for this network
is 4-tuples. Here, the problem is that the attacker does not know the
condition of such flow rule in use initially.

HFC SCANNER solves this problem by simply modifying the
fields of a packet header when it scans a network. It first sends
two (or more) same network packets to a target network, and if it
receives response packets for these packets, it sends another two
(or more) packets whose header field (e.g., destination IP address)
has been modified to the target network. Whenever it receives a
response packet, it measures the response time (i.e., the time dif-
ference between the time when HFC SCANNER sends a packet and
the time when HFC SCANNER receives a response packet). Here,
the key point is HFC SCANNERr sends the same network packet
to a target network twice (or more). HFC SCANNER assumes that
the first packet may make the data plane ask the control plane, and
it also assumes that the second packet will be handled by the data
plane itself, because the data plane should have a flow rule for the
first packet. Based on this intuition, HFC SCANNER may consider
that the response time for the first packet as T1 and the response
time for the second packet as T2.

HFC SCANNER continues this operation until it collects enough
samples by modifying a value for a (dfferent) field of a network
packet header. For example, if HFC SCANNER conducts this op-
eration when it changes a destination IP address of a packet and
it wants to collect 10 samples, then it modifies the destination IP
address of a packet ten times, and it sends each modified packet to
a target network twice (or more).

If HFC SCANNER collects enough samples for a condition, it
tries to collect samples for other conditions. Since HFC SCANNER
(and the attacker) does not know the condition of a flow rule that is
used for a SDN network, it tries most possible network conditions.
To do this, HFC SCANNER continues the operation explained in
the above with modifying another field of a network packet header.
For example, if HFC SCANNER collects some samples with mod-
ifying the value of destination IP address, after that it will collect
some samples with modifying the value of destination port. Finally,
HFC SCANNERr collects sample values for each possible flow con-
dition, and these values will be used to detect whether a target net-
work is using SDN functions or not. The overall operation of HFC
SCANNER is presented in Figure 2.
Advanced Scanning Technique: When HFC SCANNER probes
networks by modifying a field of the packet header, it is not easy
to change some parts. For example, if HFC SCANNER changes the

Create Packet

Send Packet

Receive Packet

Modify Value of
Packet

Header Field

Send Packet

Receive Packet

Target
Network

HFC Scanner

T1

T2

If Count > M

Increase count

NO

Choose Another
Header Field

YES

Start
Count = 0, Define M

Figure 2: Simplified function diagram of HFC SCANNER

source IP address of a packet header, it can not receive the response
packet. In this case, HFC SCANNER can choose another strategy to
conduct such scanning more robustly. First, HFC SCANNER uses
the timeout setting of a flow rule. Usually, a flow rule enforced
by the control plane has a timeout (e.g., in the case of OpenFlow
specification, it is recommended at 30 seconds), and if this timeout
has been expired, the rule will be deleted. Thus, HFC SCANNER
can scan a network without changing a source IP address, but it just
sends the packet in more than 30 seconds interval. Moreover, using
timeout can also provide the effect of stealthy scanning, thus, an
attacker can scan a network with minimal detection.

Second, an attacker can rent some bot infected hosts to run HFC
SCANNER in multiple hosts. Since it is cheap to rent bot infected
hosts (e.g., renting 1,000 hosts just costs 25 US $ [15]), the attacker
can easily hire multiple hosts and he can run HFC SCANNER with
its own source IP address, which is the same effect of modifying
source IP address.
Statistical Testing for Two Sample Sets: If an attacker collects
samples of T1 and T2 using HFC SCANNER, he will face the sec-
ond challenge. This challenge can be solved by employing sta-
tistical testing methods, such as t-test [2]. This test simply tests
whether two samples (i.e., T1 and T2) are significantly (statisti-
cally) different from each other or not with a high confidence. This
test just requires a mean and standard deviation values of each sam-
ple that can be easily obtained, and the test method is pretty simple.
Of course, an attacker can easily use more advanced statistics or
machine learning techniques to improve the accuracy.

3.3 Launching DoS attacks to a SDN network
If an attacker runs HFC SCANNER and collects network infor-

mation, he can investigate whether a target network is using SDN
or not through a simple statistical testing method. If the test results
show that a target network is likely to use SDN, the attacker will
further conduct the resource consumption attack. Since the attacker
already knows the condition of the flow rule for the target network
(with the help of HFC SCANNER), now he just needs to send net-
work packets to consume SDN resources of the target network.

The basic requirement for this attack is pretty simple, i.e., to send
network packets that can produce new flow rules. For example, if
the attacker knows that the condition of the flow rule for the target
SDN network depends on destination IP address, he can send many
network packets with different destination IP addresses to the target
SDN network. Then, these packets will be reported to the control
plane (i.e., resource consumption attack of the control plane), and
the corresponding new flow rules will be enforced to the data plane

(i.e., resource consumption attack of the data plane).
Let’s take a closer look at a more practical example case. HP

5406zl switch that supports OpenFlow functions has been know
that it supports 1,500 OpenFlow flow rules [1]. And, we assume
that a network administrator uses this switch to provide SDN func-
tions for his network, and he creates an application manages his
network by enforcing flow rules defining 4-tuples. In this case, if
the attacker fingerprints this network and finds its condition (i.e.,
4-tuples) through HFC SCANNER and a statistical testing method,
he can simply produce 1,500 packets with different source ports to
consume all flow tables of this switch. The default timeout for a
flow rule is 30 seconds [8], and it means that if the attacker gener-
ates 1,500 packets within 30 seconds, he can achieve his goal. The
attacker only needs to send 50 packets per second, which is a very
easy job with any kinds of computer.
Advanced Resource Consumption Technique: If an attacker
sends too many packets to a target network to cause resource con-
sumption, it could be detected by a security monitor. Thus, he
needs to make a plan for attacking the target network with mini-
mal detection. To do this, he can choose a condition that can hide
himself. For example, if the source IP address can be used to let the
data plane ask the control plane, an attacker can send packets with
spoofed source IP addresses to a target network. Then, the SDN re-
sources of the target network (i.e., flow table entries and flow rule
handling capacity of the control plane) will be consumed without
revealing the attacker’s origin.

4. EVALUATION
To understand the feasibility of the proposed attack, we have

evaluated it with a real world test. HFC SCANNER requires T1 and
T2 values to detect a SDN network. However, in current network
situation, it is very hard to collect this information from the Inter-
net, because SDN is not widely deployed to many networks (but we
believe that SDN will be employed to many networks soon). There-
fore, we have decided to use other measurement results to estimate
T1 and T2 values.

4.1 Data Collection
We send 20 ping packets to 28 different networks (we call them

target networks) to collect T2 values, and we collect the response
times from the second packets (i.e., ignore the response time for the
first packet) to avoid any possibility of including flow setup time of
a SDN network. We send ping packets from a state in U.S.A., and
the locations of the target networks are distributed in the same state,
in different states (the same continent), and in different continents.
Some information of target networks is shown in Table 1. The mean
and standard deviation values of the response time for each target
network is presented in Table 2.

Location Count Domain Type Percentage
In state 3 3 .edu 10.7%
out of state 16 6 .com, 10 .edu 57.1%
out of continent 9 5 .com, 4 .edu 32.2%

Table 1: Information of target networks

4.2 Estimating T1 Values
It is very hard to get the information of T1, thus we decide to

estimate T1 by adding flow setup time to T2 values. With the
help of the previous work [12], we can get the information of flow
setup time for three different control plane cases: (i) new version
of NOX [7], (ii) Beacon [6], and (iii) Maestro [5]. From this work,

we can obtain the mean and standard deviation value of flow setup
time of each control plane, and we regenerate 20 flow setup times
(i.e., β) based on this information (at this time, we assume that flow
setup time follows the normal distribution). Finally, we add these
regenerated values to T2 (i.e., one of regenerated value + one of
T2 samples) to estimate T1 values.

There are several experimental results for flow setup time in the
previous work [12], and we choose three cases for our evaluation:
(i) when 1 switch is connected to the control plane (1-switch), (ii)
when 16 switches are connected to the control plane (16-switch),
and (ii) when 256 switches are connected to the control plane (256-
switch). Therefore, we finally have 9 different SDN network envi-
ronments for estimating T1 (i.e., three different control planes with
three network configurations).

4.3 Fingerprinting Result
We apply t-test [2] to collected T2 and estimated T1 samples

to figure out if T1 is significantly different from T2, and the test
results (i.e., fingerprinting results) are shown in Table 3. The test
results are same as the detection results by HFC SCANNER, and we
report in the table whether T1 is distinguishable, and scan success
(S in the Table) or failure (F in the Table).

When there is a single switch connected to the control plane,
HFC SCANNER can find most of target networks. In the case of
the NOX control plane, it can fingerprint 24 networks out of 28
(i.e., fingerprinting rate is 85.7%), and the results are the same
when there is Beacon or Maestro control plane. Interestingly, HFC
SCANNER does not detect 4 networks for all control planes, and
these networks show relatively longer response time than other net-
works and have large standard deviations. In this case, flow setup
time may not be distinguishable. However, since most networks
(even located in the difference continents) can be reached in short
time (e.g., less than 90 ms), HFC SCANNER can still effectively
figure out whether they employ SDN or not.

When 16 switches are connected to the control plane, fingerprint-
ing results are similar to the case of 1 switch. However, in the case
of the Beacon control plane, HFC SCANNER does not fingerprint
any networks. The reason is the flow setup time of the Beacon con-
trol plane (16 switch case) shows large standard deviation values
compared with its mean value (i.e., mean value is 11.89 and stan-
dard deviation is 26.22). Therefore, the distribution of flow setup
time is not distinguishable. This kind of characteristics can be also
observed when 256 switches are connected to the control plane. In
this case, the standard deviation is also quite high compared with
mean value of the flow setup time. However, in the case of Maestro
control plane, HFC SCANNER can detect most of networks because
the standard deviation of the flow setup time for the Maestro control
plane is not so high.

Based on these results, we find two cases that a SDN network is
likely to be fingerprinted by a remote attacker: (i) if the flow setup
time is not so smaller than the response time (in our experiment,
more than 10% of the response time), and (ii) if the standard devia-
tion of the flow setup time is not much bigger than the mean value
of the flow setup time (in our experiment, less than 2 * mean). In
addition, we observe that the distance of a target network from the
attacker is not so important, instead the response time is much more
important. If the response time is comparable with the flow setup
time, we believe that an attacker can fingerprint most network using
SDN no matter where they exist.

4.4 DoS Attack Result
We have set up a test environment to understand whether the

proposed DoS attack is successful or not, and the environment con-

in state out of state
ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Average (ms) 13.49 67.42 68.28 89.34 69.42 83.47 62.89 56.9 50.38 87.48 78.03 52.61 62.82 70.29
STD 3.55 3.01 7.23 2.58 4.49 2.42 2.31 3.18 4.17 62.83 2.86 2.36 4.28 2.09

out of state out of continent
ID 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Average (ms) 61.74 109.58 95.93 99.7 61.52 354.69 143.27 48.93 49.16 338.7 333.26 130.19 62.21 50.42
STD 1.52 4.71 3.09 11.87 2.6 94.45 1.67 1.08 2.62 103.52 92.97 3.53 5.39 5.71

Table 2: Average response time for each target network

in state out of state
ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14
NOX (1-switch) S S S S S S S S S F S S S S
NOX (16-switch) S S F S S S S S S F S S S S
NOX (256-switch) F F F F F F F F F F F F F F
Beacon (1-switch) S S S S S S S S S F S S S S
Beacon (16-switch) F F F F F F F F F F F F F F
Beacon (256-switch) F F F F F F F F F F F F F F
Maestro (1-switch) S S S S S S S S S F S S S S
Maestro (16-switch) S S S S S S S S S F S S S S
Maestro (256-switch) S S S S S S S S S S S S S S

out of state out of continent
ID 15 16 17 18 19 20 21 22 23 24 25 26 27 28
NOX (1 switch) S S S S S F S S S F F S S S
NOX (16-switch) S S S F S F S S S F F S S S
NOX (256-switch) F F F F F F F F F F F F F F
Beacon (1-switch) S S S S S F S S S F F S S S
Beacon (16-switch) F F F F F F F F F F F F F F
Beacon (256-switch) F F F F F F F F F F F F F F
Maestro (1-switch) S S S S S F S S S F F S S S
Maestro (16-switch) S S S S S F S S S F F S S S
Maestro (256-switch) S S S S S F S S S F F S S S

Table 3: Fingerprinting results for target networks (S - Success, F - Failure)

sists of a single OpenFlow switch, a controller, and two hosts for
network communications. We use the software based OpenFlow
switch implementation for the OpenFlow switch [9], and it is in-
stalled on an independent linux host (i.e., software switch), and we
set the maximum flow rules for this switch as 1,500, which is the
same configuration for HP 5406zl switch [1]. We use POX as the
controller, and it launches a simple layer 4 packet switching ap-
plication (thus, this application enforces a flow rule with 4-tuples
granularity). Other two hosts are simple linux boxes; one is used
for the proposed attack, and the other is used to run a TCP server
program. For DoS attack packets, we simple use the tcpreplay tool
[13] to send multiple network packets, whose 4-tuples are differ-
ent from each other. In addition, we control the packet sending
rate from 50 pps (packets per second) to 600 pps to launch diverse
attack scenarios.

Figure 3 (time) presents that how long it will take for an attacker
to consume all flow rule entries in the data plane, and it clearly
shows that an attacker can successfully conduct a DoS attack to
the data plane. Although an attacker sends attack packets in low
rates (e.g., 50 pps or 60 pps), he can make the data plane hard
to handle normal network flows in 30 seconds. Moreover, if the
attacker sends attack packets intensively, he can consume all flow
table entries in 3 seconds. It is a critical problem, because even
if there might be a defending approach to protect the data plane
from the DoS attack, if it does not stop sending attack packets in 3
seconds, it cannot protect the data plane.

In addition, we measure the bandwidth required for the proposed

attack, and it is presented in Figure 3. It shows that the DoS attack
requires around 200 Kbps (bytes per second) in maximum and 20
Kbps in minimum. It implies that it is possible that an attacker can
conduct a relatively stealthy DoS attack to a SDN network. If the
attacker can hire multiple hosts by renting bot infected hosts, he
can conduct a DoS attack with minimal detection. For example, if
the attacker hires 100 hosts, each host only requires to send packets
at 200 bps, which mimics a normal client quite well and thus hard
to detect/defeat.

Figure 3: Required attack time and network bandwidth for
DoS attack

5. POSSIBLE DEFENDING TECHNIQUES
To defend SDN networks from the proposed attack, we now dis-

cuss some possible defending methods.
First, we can compress the flow rules by changing the condi-

tion of a flow rule to make the flow rule cover wider ranges with
wildcards. For example, if the destination port is a part of a condi-
tion for a SDN network providing load balancing function, we can
change this part (i.e., the destination port) into the wildcard to let
a single flow rule handle many network flows, when there are too
many network flows to handle. Of course, it could ruin some load
balancing policies. However, it can make the SDN network still be
working, and in some situation it is more important (to keep the
network resilient from proposed DoS attack) than preserving the
load balancing policy.

Second, we can add some new functions that can detect this kind
of scanning attack to the data plane. If a host produces some net-
work flows that can generate new flow rules in a short time period,
we can consider it as suspicious. Then, we can ignore some net-
work packets from this source for some time interval. However,
this may not work for distributed attacking hosts, e.g., a botnet.

Third, based on our detection results, we observe that if the stan-
dard deviation of the flow setup time is high, HFC SCANNER can-
not effectively fingerprint a SDN network. We can use this charac-
teristics to mislead the proposed attack. For example, we can make
the control plane varies the flow setup time dynamically to confuse
HFC SCANNER. However, we should consider that the flow setup
time should still meet some requirement (e.g., flow should enforced
within 20 ms) in some cases.

6. RELATED WORK
Till now, there is very little work on the security attacks against

SDN. In our early work [11], an evasion attack called dynamic flow
tunneling is proposed to evade existing SDN security policies. In
this paper, we focus more on the fingerprinting and DoS attacks
on SDN. In [14], Wang et al. have also noticed the resource con-
sumption problem when an OpenFlow application performs load
balancing functions. They have proposed a method to change the
granularity of flow rules dynamically to reduce this flooding pres-
sure. They merge flow rules that they share some network space
(e.g., the same /24 subnet) and change them into wildcard rules.
This approach can reduce the number of fine-grained flow rules.
However, it still can not address all issues. First, although their
proposal can reduce the number of fine-grained flow rules, an at-
tack can still generate flooding attack packets whose source and
destination IP addresses are randomly chosen. Then, it is hard to
merge flow rules for these packets. Second, OpenFlow switches
use TCAM (Ternary Content Addressable Memory) to handle wild-
cards flow rules with high performance. Since this TCAM is much
more expensive than SRAM that is used for storing flow rules with-
out wildcards, switch vendors typically only equip a very small size
of TCAMs into OpenFlow switches. DevoFlow [1] has been pro-
posed to relieve this issue. It employs the technique of flow rule
cloning that changes flow rules with wildcards into a flow rules
without wildcards. Combining the approaches proposed by Wang
et al. [14] and DevoFlow [1], we can reduce the effects of flood-
ing. However, it still does not address the problem when an attacker
generate random flooding attack packets.

7. CONCLUSION AND FUTURE WORK
In this paper, we introduce a new fingerprinting attack against

a SDN network, and we also show its feasibility with real world
experimental data. To the best of our knowledge, the proposed at-

tack scenario is the first attack case to a SDN network that can be
conducted by a remote attacker, and this attack could significantly
degrade the performance of a SDN network without requiring high
performance or high capacity devices. We believe that discussing
new threats against a SDN network is very important because it can
guide us to design better (more secure) SDN solutions. In addition,
we believe that SDN is still evolving and improving, and this kind
of discussion is necessary to lead SDN to the right track.

In our future work, we will set up a more realistic SDN net-
work environment for our evaluation, and we plan to further im-
prove HFC SCANNER. In addition, we will consider more possible
network attack cases against a SDN network, as well as more pos-
sible defending techniques.

8. REFERENCES
[1] A. Curtis, J. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,

and S. Banerjee. Devoflow: Scaling flow management for
high-performance networks. In Proceedings of ACM
SIGCOMM, 2011.

[2] J. Fisher Box. Guinness, gosset, fisher, and small samples. In
Statistical Science, 1987.

[3] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis,
P. Sharma, S. Banerjee, and N. McKeown. Elastictree:
Saving energy in data center networks. In Proceedings of
NSDI, 2010.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
OpenFlow: enabling innovation in campus networks. In
Proceedings of ACM SIGCOMM CCR, April 2008.

[5] T. S. E. Ng, A. L. Cox, Z. Cai, F. Dinu, and J. Zheng.
Maestro openflow controller. https:
//code.google.com/p/maestro-platform/.

[6] On.Lab. Beacon openflow controller.
https://openflow.stanford.edu/display/
Beacon/Home.

[7] On.Lab. Nox openflow controller.
http://www.noxrepo.org/.

[8] OpenFlow. OpenFlow Swtch Specification version 1.1.0.
Technical report, 2011. http://www.openflow.org/
documents/openflow-spec-v1.1.0.pdf.

[9] OpenFlow.org. Openflow switching reference system.
http://www.openflow.org/wp/downloads/.

[10] L. Popa, M. Yu, S. Y. Ko, I. Stoica, and S. Ratnasamy.
Cloudpolice: Taking access control out of the network. In
Proceedings of HotNets, 2010.

[11] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and
G. Gu. A security enforcement kernel for openflow
networks. In Proceedings of HotSDN, 2012.

[12] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and
R. Sherwood. On controller performance in software-defined
networks. In Proceedings of HotICE, 2012.

[13] A. Turner. TCPReplay.
http://tcpreplay.synfin.net/.

[14] R. Wang, D. Butnariu, and J. Rexford. Openflow-based
server load balancing gone wild. In Proceedings of HotICE,
2011.

[15] WEBROOT. How much does it cost to buy 10,000
U.S.-based malware-infected hosts?
http://blog.webroot.com/2013/02/28/how-
much-does-it-cost-to-buy-10000-u-s-
based-malware-infected-hosts/.

