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Abstract. Advanced false data injection attack in targeted malware
intrusion is becoming an emerging severe threat to the Supervisory Con-
trol And Data Acquisition (SCADA) system. Several intrusion detection
schemes have been proposed previously [21, 3]. However, designing an ef-
fective real-time detection system for a resource-constraint device is still
an open problem for the research community. In this paper, we propose
a new relation-graph-based detection scheme to defeat false data injec-
tion attacks at the SCADA system, even when injected data may seemly
fall within a valid/normal range. To balance effectiveness and efficiency,
we design a novel detection model, alternation vectors with state rela-
tion graph. Furthermore, we propose a new inference algorithm to infer
the injection point(s), i.e., the attack origin, in the system. We evaluate
SRID with a real-world power plant simulator. The experiment results
show that SRID can detect various false data injection attacks with a
low false positive rate at 0.0125%. Meanwhile, SRID can dramatically
reduce the search space of attack origins and accurately locate most of
attack origins.

Key words: Intrusion Detection System, Cyber Security in SCADA,
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1 Introduction

In recent years, we have witnessed that the great technical innovation has in-
trinsically changed our definition about the data acquisition and control system.
Nowadays, when current Supervisory Control And Data Acquisition (SCADA)
system starts to connect a great number of sensors to highly-flexible distribut-
ed networks, it is no longer closed and single-functional, but instead open, and
complex. Across the waves of such innovation, cyber security of SCADA systems
attracts a lot of research attention. Especially after the Stuxnet[2] worm spread
across Iran nuclear infrastructure and occupied the headline of news and media,
we naturally ask the question: is our SCADA system ready for the challenges
brought by such malware intrusion?



Unfortunately, we may not be confident enough to declare a secure SCADA
system: Our existing system is still connected to vulnerable networks which in-
tegrate multiple communication protocols and lack proper data validation and
authentication [5, 10, 23, 22]. It implies that attackers can easily infiltrate the
network and compromise the whole control system. Besides that, the potential
vulnerability of industrial control system software may also become the Achilles’
heel and open a back-door for those malicious attackers. As stated in a vulnera-
bility trends report from Symantec [1], the number of vulnerabilities targeting at
SCADA systems has undergone an exponential uptrend since 2011. For example,
there were over 800% more vulnerabilities discovered in 2012 than the number
discovered in 2010.

Therefore, deploying intrusion detection onto SCADA systems becomes a
pressing task for security practitioners. Multiple schemes, such as behavior-based
scheme [14] and bloom-filter-based scheme [21], have been proposed. However,
when we review the recent intrusion incidents conducted by targeted malware,
such as the infamous Stuxnet malware, we find these IDS schemes are neither
complete nor accurate. In particular, there are two problems causing current IDS
systems vulnerable to targeted malware’s intrusion:

First, the current design of many IDS systems follows a hierarchical and
distributed structure, in an attempt to secure all sensors and devices in the sys-
tem [19]. However, with too high-level view and always limited resources, this
may be ineffective and inefficient to handle some attacks deeply targeting at
some specific critical control component. In reality, it has been evidenced that
malware shows special interest in some key component, e.g., Stuxnet only infects
Siemens S7-3000 devices which control the centrifuge and pumps. Therefore, an
IDS scheme that can automatically find and protect the critical control compo-
nent(s) is a more effective solution to detect targeted malware’s intrusion.

Second, many IDS systems follow the idea of traditional intrusion detection
schemes, which detect abnormal communication flow(s) between devices. How-
ever, in the context of SCADA, our first priority is to ensure the validity of
system status. Therefore, we think our detection target should be invalid system
states. As an illustration, we examine the Stuxnet worm again: when the control
device has been compromised, the Stuxnet periodically modifies the frequency
to 1410 Hz and then to 2 Hz and then to 1064 Hz, and thus affects the opera-
tion of the connected motors by changing their rotational speed. Typically, such
behaviors cannot be detected by existing IDS because each of its operation is
under the valid threshold of IDS’s detection rules. However, the system states,
or the relations between continuous states, violate the normal disciplines, and
such inconsistency is a clear evidence when intrusion happens in the SCADA
system.

In this paper, we propose a novel relation-graph-based intrusion detection
scheme, SRID, which aims to detect false data injection attacks in SCADA sys-
tems. In particular, given a SCADA system, SRID automatically analyzes the
system and extracts independent components (each component is a logically in-
dependent control system, more details defined in Section 2.3). Then, for each



component, SRID extracts the internal relations among different system vari-
ables and derives a graph model to describe valid system states. To achieve a
balance between effectiveness and efficiency, we propose alternation vector and
state relation graph as our detection model. To further figure out the origins of at-
tacks, i.e, which device (among all possible data sources) has been compromised,
we propose an inference algorithm to deduce what is the possible compromised
device causing the inconsistency.

To evaluate the effectiveness and efficiency of SRID, we test it with a real-
world power plant simulator with 142 system variables. We then inject malformed
data into the simulator with both single-point and multi-point injection schemes.
As shown in the result, almost all the injected data and origins can be accurately
detected and inferred.

In summary, our paper makes the following contributions:

– We introduce a graph-based scheme for SCADA systems to detect advanced
false data injection attacks, even when injected data fall within the valid/normal
range of signal specification. SRID is a systematic approach to monitor sys-
tem states, detect inconsistent states and infer the compromised origins.

– We propose multiple novel intrusion detection models for SCADA, such as
alternation vectors and state relation graphs, to achieve real-time detection
on resource-constrained devices.

– We evaluate our system with a real-world power plant simulator and SRID
performs with a 95.83% detection rate and a 0.0125% false positive rate.
Meanwhile, our inference module can also achieve a high accuracy in locating
injected data origins.

2 Background and Problem Statement

2.1 Background

SCADA(supervisory control and data acquisition) is an advanced control system
which collects the data from system variables in real-time, operates with encod-
ed signals over communication channels, and provides control of local/remote
equipment. These years, as SCADA systems have been widely applied in Smart
Grid systems for data monitoring and state estimation [12], cyber security on
SCADA has attracted more and more public attention as an emerging, cross-
disciplinary research topic. Among those attacks, false data injection attack is
of particular interest since it directly affects the reliability and robustness of
systems. As defined in related work [12], false data injection is a generalized at-
tack which injects any type of malformed data into the data acquisition system.
Such malformed data can be in any form, such as the measurement data from
sensors [18], or even the control commands from programmable logic circuits [17].

To detect such injected data, there are two lines of research work. In the first
direction, researchers treat the injected data as an injected signal and detect
it using bad-data (e.g., data out of normal ranges) processing schemes. As a
common detection strategy, existing studies, such as [7, 9], introduce artificial



redundancy to mitigate the effect of injected data. These approaches have been
proved to be effective for securing the integrity of small numbers of system
variables. The common assumption of these work is that the attacker has only
limited access to system resources, i.e, altering a small amount of measurement
data of sensors or meters. However, when well-crafted malware has been involved
in the arm race, such assumption may no longer be held because malware has
strong abilities to propagate itself among similar devices and manipulate multiple
data signals at the same time.

To defeat malware’s intrusion, another line of research concentrates on de-
ploying existing intrusion detection techniques onto SCADA systems. Multiple
different detection models, such as statistic-based [15], behavior-based [14] and
bloom-filter-based [21], have been proposed. However, as a highly complicated
control system, deploying similar or identical rules on different control compo-
nents is not an ideal choice. For example, the centrifuge control component may
require different policies from the gas pump control component. In addition, most
existing IDS systems only enforce detection rules on each communication flow,
they lack a global view of relationship among different variables to determine
whether the whole system is under attack or not.

2.2 Assumption and Approach Overview

In this paper, we focus on detecting false data injection attacks on SCADA
systems. To be concrete, we assume the following strong attack model:

– An attacker has the ability to inject single or multiple data at any time.
– The injected data can fall into the valid range of signal specification, which

can cause a difficult time for many existing anomaly-based detection schemes.

In this paper, we provide a relation-graph-based intrusion detection scheme
for SCADA systems. Our proposal is trying to achieve two tasks complementing
the existing intrusion detection schemes:

– Component-based Policy: Our scheme automatically analyzes the inter-
nal relations among system variables. Then we extract components for each
independent control sub-system. Based on each component, we provide d-
ifferent detection rules. Through such component-based policy, we can not
only reduce the redundant overhead but also provide more accurate results.

– Correlation Model: Our detection model is based on the internal relations
among different system variables and states. Hence, we design correlation
graphs (for system variables) and state relation graphs (for system states) to
describe the valid behavior patterns of our target SCADA system. Therefore
,SRID is designed to protect the system from entering invalid running status.

Next, we provide our definition of component and correlation model.

2.3 Terminology

Definition of Component: In our definition, we define a component as an sub-
system which controls an independent set of system variables. As an illustration,



we show an example of the controlling component of a power plant boiler in
Figure 1. In this system, coal is automatically transported into boiler based on
the temperature meter. If the temperature is high, few coal will be transported
into the system. Otherwise, more coal is needed. The pressure is proportional
to the temperature, which is collected by the temperature meter. Thus, higher
temperature generates higher pressure. Since all these system variables affect the
control of the boiler, we treat them as a component.
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Fig. 1. An Example of False Data Injection

In this example, we find a component:{t(temperature), p(pressure), c(coal)}.
The component is normally a subset of the whole control system. In our design,
we allow users to customize the system variable subset. Also, we provide another
automatic way to extract independent components from a SCADA system.
Definition of Correlation Model In the above example, suppose that the
attacker can compromise the temperature meter to inject fake data into the
system. In order to evade bad-data based detection, she keeps changing the
value of temperature meter to a valid low value. While the temperature keeps
lower, the coal will continuously be transported. Finally, the boiler could blast.

Note that there is no detectable bad data. Hence, bad-data processing scheme
will be less effective in this case. However, if we further examine the relation
among different meters, we can find the inconsistency: while the attacker can
modify the temperature meter to a lower value, the value from the pressure meter
is unchanged, which undoubtedly violates the proportional relation between two
meters. Our definition of State-Correlation is based on such insight.

Formally, we define the Correlation Model as the correlation between different
variables xi under different time states ti.

c(xi,ti) = f(x1, x2, x3, ...., xn) (1)

More specifically, we consider two types of variable correlation models in our
definition:

Forward Correlation: The forward correlation is a static structure, in which
all system variables will not be affected by the time. Thus, the value of one
variable in the current state only depends on the values of other related variables
in the simultaneous state. Given the power system variables x = (x1, x2, ..., xn)

T ,
Equation 2 reflects such forward relation. At any time t, the value of variable i



depends on the values of other variables such as variable j, variable k at time t.

xi,t = f(xj,t, xk,t...) (2)

Since the values of system variables do not depend on time t in the forward
correlation structure, Equation 3 can be further simplified as:

xi = f(xj , xk...) (3)

Feedback Correlation: The feedback correlation is a dynamic structure corre-
sponding to the time. In such relation, the value of one variable in the current
state depends on not only the values of other related variables in simultaneous s-
tates but also the values of some related variables in the previous state. Equation
4 reflects such feedback relationship. At time t, the value of variable i depends
on the value of variable j at time t and the value of variable k at time t− 1.

xi,t = f(xj,t, xk,t−1...) (4)

We illustrate another example to describe the correlation model as shown in
Table 1. Given system variables x = (x0, x1, x2, x3, x4, x5, x6)

T , Table 1 shows
the relationship of different variables in different types of models. For example,

Table 1. Functions of forward and feedback data relation structures

PPPPPPPstructure

variable
x0 x1 x2 x3 x4 x5 x6

forward x0 x0 ∗ x0 x1 − x0 x2/x1 x2 − x3 sin(x4) cos(x5)

feedback x0,t x0,t × x0,t x1,t − xt,0 (x2,t/xt,1) + x5,t−1 x2,t − x3,t sin(x4,t) cos(x5,t)

variable x1 in the forward data relation structure equals the squares of x0 and
variable x3 equals x2/x1; Variable x3 in the feedback data relation structure
equals x2,t/x1,t + x5,t−1.
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(a) forward relation graph of variables (b) feedback relation graph of variables

Fig. 2. Forward and Feedback Correlation Model

Based on the table description, we further generate a correlation graph, which
is shown in Figure 2. In the figure, the dash line shows the feedback correlation,
in which the value of x3 depends on the value of x1 and x2 from the current
state and the value of x5 from the previous state.



3 System Design

In this section, we present the detailed design of SRID. As seen in Figure 3, there
are three basic steps of SRID: Component Analysis, Detection Model Generation
and Origins Inference. In the first step, SRID automatically analyzes the internal
relations between different variables in the SCADA system. In the second step,
we propose a graph-based detection model, alternation vectors with state relation
graphs, for efficient online intrusion detection. Finally, our inference model traces
back the intrusion and infers the possible compromised origins.
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Fig. 3. Architecture of SRID

3.1 Component Analysis

In the first step, our target is to find the internal relations among system vari-
ables inside each independent component. As we discussed, the component can
be expressed as a set of system variables, such as x1, x2, ....xn. The goal of com-
ponent analysis is to derive the forward and backward correlations, which can
be expressed as correlation graphs, illustrated in Figure 2.

To build such relations, the most straightforward and easiest solution is to
allow the system designer to specify in advance. With the involvement of human
assistance, we can obtain an accurate model which specifies the mathematical
relations of each variable. However, since such human effort is tedious and some-
times not available, we can propose another approach for automatic extraction.

The idea is to apply classic control variate method which alters one variable’s
value at a time. When we alter one variable, we record whether any of other
variables has been changed or not. If some variable changes, we build a directed
edge from the control variable to the alternated variable in the graph. Then we
reset the system, and change another variable in the second round. The process
iteratively continues till we find all the relations between variables.



The control variate method can describe the forward correlation between
variables. For the feedback correlation, we apply program analysis on the de-
vice’s firmware. The idea is to conduct data flow analysis on each variable and
determine whether the previous states may affect its current value or not. To
achieve that, we collect a set of execution traces for the firmware from t0 to time
window limit tm. Then we apply the data flow analysis across different traces
and find whether the previous variable affects the following states. If so, we draw
a feedback line (as seen in Figure 2) in our graph.

One sample output of this step is the correlation graph illustrated in Figure 2.
Based on the graph, we can extract all connected components. As we mentioned,
we allow users to specify the analyzed component in advance. However, if the user
does not specify any component beforehand, we can analyze the whole SCADA
system and treat each connected component in the graph as the subject(s) of
our further steps.

3.2 Detection Model Generation

In the second step, we study the changing pattern of the variables for the com-
ponent. The task of SRID is to determine, at time ti, given the current states of
component variables, whether the system is under attack or not?

To answer the question, we need to first describe the pattern of normal system
operation. In our design, we propose a novel way, alternation vectors, to represent
real-time states of a component under normal operation.
State Representation using Alternation Vectors Suppose a component
has n variables (x1, x2, ..., xn)

T . At each time t, a state can be represented by
a vector of different variable such as (x1,t, x2,t, ..., xn,t)

T . For that, we have to
store the concrete value for each variable and such scheme may consume large
amount of memory space when the vector is high dimensional. In our scheme, we
apply alternation vector, which only records the alternation relations between
two continuous states. It can be expressed with Equation 5:

f1(xi,t) =


1 xi,t − xi,t−1 > 0

0 xi,t − xi,t−1 = 0 or t = t0

−1 xi,t − xi,t−1 < 0

, i ∈ 1, 2, · · · , n (5)

For the initialization state, t0, we define f(xi,t0) = 0. If the value of variable
i increases from the last value, we use 1 to indicate the increase. Also if the value
of variable i decreases from the last state, we use −1 to indicate the decrease. If
the value keeps the same, we denote it as 0.

Using alteration vectors, we can model a constantly changing component by
a series of alternation vectors in a time window from t0 to tm. The advantage of
alternation vectors is to save memory for each state. Since we only store 2 bits
for each variable’s state, our scheme is efficient for resource-constraint devices.

Based on the alternation vectors, we discuss our detection scheme using state
relation graphs.



State Relation Graph Our intrusion detection model is based on state relation
graphs. The state relation graph is a directed graph G(V,E), which describes the
normal states of the component. To construct the relation graph, we need to run
SRID and collect all the information about those normal states in a training
stage.

Suppose that we run SRID to train the model from a time window t0 to tm,
and we have n different variables in the analyzed component. At each time slot
ti, we compute the alternation vector based on its previous state at ti−1 and
current state. For each alternation vector, we create one node in the graph. If we
find the node has been created before, we directly use the existing node. Then we
create one edge which points from the ti−1 state’s node to ti state’s node. Each
edge is marked with a time stamp ti. This process continues until we enumerate
all the states in the time window.

The state relation graph for our illustration example(in Section 2.3) is shown
in Figure 4(a). In theory, there are at most 3n different alternation vectors in
the graph. However, for a practical system, the space is normally limited. For
the illustrated example, we have 7 variables and only 37 different state nodes in
the graph.

Using the graph, we can build our detection model. The idea for our intrusion
detection model is to assure that the variables satisfy the normal changing rule.
Intuitively, the malicious injected data, such as Stuxnet’s malformed frequency
data, can be easily detected since it clearly violates the normal changing rules.
Reduced State Relation Graph There are two possible problems directly
using the state relation graph for detection: First, since we have to maintain
the time information for each edge, we have to consume considerable memory to
store the trained model. It may complicate the matching process and overburden
the resource-constrained device. Secondly, strictly following the transition edges
may cause some false positives if some states are not stable.

Therefore, we optimize our state relation graph and remove the time stamp
information for each edge. After removing time stamps, there are many duplicat-
ed edges existed in the graph. Hence, in the second step, we traverse the whole
graph and remove all duplicated edges. The example’s reduced state relation
graph is shown in Figure 4(b). As we can see, the graph is greatly simplified
and, if we apply linked list structure, it only consumes less than 360 bytes to
store the whole graph in memory.

Based on the reduced state graph, we summarize the detection steps:

– Step I: In detection phase, if we find the new alternation vector is not a node
in the graph, we directly generate an alert for Invalid State. Since we can
store all the nodes in a hashtable, it takes O(1) to fulfill the check.

– Step II: If it is a valid state in the graph, we have to check whether it is
reachable from the previous state or not. If it is not reachable from the
previous state, we generate an alert for Invalid Transition. It takes O(1)
space to maintain the last transition state and O(1) time to detect the invalid
transition (use a hashtable for each node’s edge).
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Fig. 4. Time-series State Relation Graph Reduction

In all, SRID can find possible intrusion/false data in O(1) time which is
particularly attractive for real-time detection. Meanwhile, with limited number
of possible states, it also saves the memory consumption and achieves a better
balance between effectiveness and efficiency.

3.3 Attack Origins Inference

The goal of the origins inference model is to infer the possible injection point.
Our inference is based on the correlation graph which is generated in Component
Analysis. As we introduced befor, the correlation graph describes the internal
relations of variables in the component. Therefore, when we detect the violated
state, we can trace back the dependence of violated variable(s) and find the
possible origin(s).

Next, we analyze our inference algorithms in several possible scenarios.
Scenario I: Known Mathematics Correlation
As we discussed in Section 3.1, we allow users to provide the mathematical
relations for the correlation graph. In this case, we have pre-knowledge about
the variable relation. We believe it is a valid assumption because existing bad-
data processing schemes [7, 9, 26] hold the similar assumption.

With knowing the mathematical correlation, our inference algorithms can
precisely locate all possible injection points, no matter whether it is a single-
point injection or multiple-point injection. To illustrate that, we go through an
inference example in Table 2. We first reconstruct the time series data of the
whole component. As shown in Table 2, a false data 3.5 is injected to x3. Such
injection will also change the value of variables x3, x4, x5, x6. To infer the origins
of false data injection, we check the inner relation among the variables based on
their values in invalid states. For example, the value of x3 should be x2/x1 = 0.75,
however, the value of x3 in the invalid state is 3.5. Such inconsistency indicates
that the variable x3 is the attack origin. For variable x4, x4 = x2 − x3 = 8.5,



Table 2. Example of Origin Inference

PPPPPPPInfer Variable
x0 x1 x2 x3 x4 x5 x6

math correlation x0 x0 ∗ x0 x1 − x0 x2/x1 x2 − x3 sin(x4) cos(x5)

Original value 4 16 12 0.75 11.25 -0.9678 0.5671
Injection value 3.5
Invalid state 4 16 12 3.5 8.5 -0.7985 0.6978

Inference result 0 0 0 1 0 0 0

which is the same as the value of x4 in invalid state, thus x4 is not the attack
origin. In the same way, x1, x2, x4, x5, x6 are not the origins of the false data
injection attack.
Scenario II: Single Point Injection
When the attacker has only limited access to the system, our inference model can
also deduce its source even without the knowledge of mathematical correlation
in advance. In the single point injection case, the attacker can only inject one
data in the system. The inference algorithm is based on the backward depen-
dence traversal which starts from the violated node in the correlation graph. We
backward check whether the previous variable deviates from the normal value
or not. If the deviation is above our pre-defined deviation threshold δ, we mark
it as a possible compromised variable. We iteratively continue till we find the
first valid variable. Since we only have one injection point, the last compromised
variable, with its corresponding device, is considered as the injection point.
Scenario III: Multiple Points Injection
When there are multiple injection points, our correlation graph may not locate
the precise points, but it can still generate a set of possible compromised vari-
ables. It is also computed by the backward dependence traversal till we reach
the root node of the dependence chain. We believe our infer algorithm can save
a great amount of work in the investigation.

Finally, our overall inference algorithm is presented in Algorithm 1.

4 Evaluation

To evaluate the performance of SRID, we test it with a boiler simulator of a real
power plant.

4.1 Data Collection

The boiler system is the core part of a power plant generator, which makes it
a popular target for malware. Thus we test our SRID with a common boiler
system simulator in a coal power plant. To find the mathematical relationship
among different variables, we reverse engineering the boiler simulator system.
142 variables are extracted from the boiler system. Figure 5 shows the relation
graph of variables and the dash line represents the feedback structures.



Algorithm 1: SRID: State relation based intrusion detection
for false data injection attack

Input: A sequence of power system state ⟨state(1, t), state(2, t) . . . , state(n, t)⟩
Output: When dose the false data state(k, i) injection attack happen? , where is the

original injected data variable(j)?
1 △ injectionDetectModel
2 time← t0
3 stateFeatureGraph[N,N ]← normalStateFeatures
4 while time < timeEnd do
5 state[n, time]← input(dataF low)
6 index← 0
7 while index < N do
8 if state[index, time] < min(state[index]) or > max(state[index]) then
9 return out of normal range

10 else if state[index, time] ∈ stateFeatureGraph then
11 index← index + 1
12 continue;
13 else
14 i← time
15 k ← index
16 return state(k, i)

17 time← time + 1

18 △ originsInferModel
19 index← 0
20 M ← variableNumber
21 variable[M ]← input(state(k,i))
22 variableRelationFeature[M,M ]← normalV ariableRelationFeatures
23 while index < M do
24 variable[index]← input(variableDataF low)
25 if varialbe[index] ∈ variableRelationFeature then
26 index← index + 1
27 continue;
28 else
29 j ← index
30 return variable(j)

31 return state(k, i), variable(j)
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Fig. 5. Variable Relation Graph of the Boiler System in a Power Plant

4.2 Overhead Analysis

To evaluate the overhead of SRID, we check how many states generated/maintained
by SRID. Since there are 142 variables in the boiler system, theoretically there



will be 3142 states. We train our system with different duration t. Figure 6 shows
the number of generated states along with different training duration.
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Fig. 6. States Number Distribution

We can see that after 1,366s, there is no more new states generated and the
total number of states is only 23, which is much smaller than 3142. Thus such
state graph can be stored in memory for realtime analysis.

4.3 Attack Detection Results

To evaluate the detection results, we first run the boiler system for 2,000s (0-
2,000s, the values of variables recorded every second, a time granularity used
for this evaluation but could be adjusted based on practical need/constraint) to
generate the corresponding state relation graph as shown in Figure 7. Then we
continue running the boiler system for another 2,000s (2,000-4,000s) to detect
when the data injection attacks happen.

We test SRID with both single-point injection and multiple-point injection.
For the single-point injection, each time we randomly choose a variable and
inject with arbitrary data that falls in its valid range. Then we randomly inject
6 times in this way during the testing procedure. Thus, among 2,000 total testing
data records (one per second), there are 6 false data injection attacks. For the
multiple-points injection, instead of injecting false data on a single variable each
time, we inject false data on different numbers of randomly chosen variables at
the same time. We also launch 6 false injection attacks for each situation during
the testing procedure.

Table 3 shows the detection results. SRID can detect all the single injection
attacks without false positives. For multiple-points injection, SRID can still de-
tect all attacks with 2 and 3 variables injection without any false positives and
false negatives. However, it failed to detect one multiple-points injection attack
with 4 variables. This leads to an overall detection rate of 95.83% (23 out of
24 attacks). Further analysis shows that this missed attack is because two con-
tinuous injections on two related states happen to satisfy the learned (normal)
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Fig. 7. State Relation Graph of the Boiler

Table 3. Detection on false data injection attacks

Types False data injection SRID detection
Injected variables Injection attacks Detected attacks False positives

Single injection 1 6 6 0
Multi-injection1 2 6 6 0
Multi-injection2 3 6 6 0
Multi-injection3 4 6 5 1

alternation relationship. While it is possible, we believe that this is difficult be
exploited by attackers, as further discussed in Section 5.

SRID also has one false positive (out of a total of 1994*4 normal data record-
s), which represents a false positive rate of 0.0125%. Further investigation shows
that it is because a normal state was not captured by the state relation graph.
Thus, SRID reports it as a false data injection attack. However, extending the
training time can reduce such false positives.

In summary, in our evaluation SRID has achieved a high overall detection
rate of 95.83% for false data injection attacks, with a very lower false positive
rate of 0.0125%.

4.4 Attack Origin Inference Results

Once the false data injection is detected in the boiler system, we need to find
out what are the origins of those attacks. To evaluate the performance of our
attack origin inference algorithm, we use the same test data mentioned above
and submit the invalid states from detection results to our inference scheme.
Table 4 shows the inference results.

SRID accurately infers all the true attack origins without any false positive in
the case of single injection, multi-injection1, and multi-injection2. For example,



Table 4. Origin inference on data injection attacks (TP means inferred true attack
origins, and FP means inferred false positive origins. For Multi-injection3, we only test
the attack origin inference on the 5 successfully detected true attacks.)

Types False data injection SRID Inference
Injected variables Injection attacks Total affected variables Total TP Total FP

Single injection 1 6 40 6/6 0
Multi-injection1 2 6 94 12/12 0
Multi-injection2 3 6 62 18/18 0
Multi-injection3 4 5 421 (avg. 84 per attack) 13/20 260

for the single-point injection case, totally 6 variables (1 in each attack) are in-
jected with the false data, which lead to totally 40 affected variables that change
their values, and SRID can successfully infer the 6 exact attack origins without
false positives. In the case of multi-injection3, SRID does not infer all attack
origins (inferred 13/20) and due to the large number of variables affected by the
attacks (each randomly injected attack affected 84 variables on average, causing
trouble for the inference), SRID unavoidably involves considerable false positives
(on average 52 in each multi-injection3 attack inference result). However, we ar-
gue that SRID still significantly reduces the search space of affected variables
(reducing from 421 to 273) and locates most of true attack origins, which is still
useful in practice.

Further analysis shows that if the false data is injected on source variables
(i.e., source vertex in the variable relation graph), all the children variables of
source variables will change their values according to their relations. Thus, there
will not exist any inconsistency among those variables. In this case, SRID can
not accurately locate the attack origins.

In summary, SRID can dramatically reduces the search space of attack origins
and even accurately locate most of true attack origins.

5 Discussion

In this section, we discuss possible problems and evasions of SRID.
Limitation of Component Analysis: One of our design challenges of SRID is
how to handle the case when the system is a blackbox to defenders. To solve that,
we present our component analysis to handle the challenge. However, there exists
some limitation for the scheme. First, the classic control variate method may not
be precise if the relation between variables is not instantly reactive. Second, we
apply dynamic program analysis to handle feedback relations. However, if we
cannot find the data-flow between different execution traces, we cannot find
the accurate model. As a result, it may cause some false positives in the final
detection result.

To solve these issues, one possible solution is mentioned in Section 3.3, i.e.,
applying manual effort to describe the mathematical correlation model. Since it
is a common assumption for many existing bad-data detection schemes [7], we
believe it is still feasible in many real-world circumstances.



Possible Evasions: To evade our SRID, attackers can modify the initial state
at t0, and introduce the inconsistency at the beginning of the time series. Such
attack cannot be detected by SRID. Hence, we assume we can ensure the integrity
at the starting point t0. We think it is a reasonable assumption because the initial
integrity check is required by most of the devices.

Another possible way to evade our system is to inject the data that affects all
other related states at the same time. It means the attacker has the full control
of the component, which, we believe, is not realistic in the practical scenario.
In this case, our system cannot detect the data injection attack. However, if
the injection data violates the threshold of some variable, which introduces new
states in our graph, SRID can still detect it.

Also, it is possible to overburden SRID using Denial of Service (DoS) attacks.
It can be achieved by injecting a large amount of false data continuously. Even
though such situation rarely happens in practice, we believe that our system
can still outperform existing schemes because SRID applies different policies
for different components and each component cannot be easily separated for
distributed detection.
Complement to Existing Schemes: Last but not least, we need to emphasize
that our scheme is not trying to replace existing intrusion detection systems
in the field. Our scheme is complementary to existing schemes and especially
useful when we try to protect the critical component in the system. However,
some anomaly-based [20] and behavior-based [14] schemes provide a consistent
protection for the entire SCADA system, which is not the focus of SRID.

6 Related Work

Existing intrusion detection solutions in SCADA can be classified into two cat-
egories.

In the first category, existing approaches [13, 6, 21, 10, 17, 18] monitor the ab-
normal behaviors using predefined rules to detect attacks. SmartAnalyzer [18,
14, 19, 17] detects possible attacks on advanced metering infrastructure (AMI). It
applies a verification engine to determine whether the sensor behaviors obey with
the predefined threat constraints, such as reachability constraint, security pair-
ing constraint, report schedule constraint, resource constraint, cyber bandwidth
constraint, priority delivery constraint and quality of delivery constraint. An-
other behavior-rule based intrusion detection system, BRIDS [14], is proposed
to secure the SCADA system in a distributed way. In [21], an idea of using
bloomer-filter to detect intrusion in resource-constrained devices is proposed.

In the second category, researchers applied state estimation to mitigate bad
data in the data acquisition sensor [4, 25, 8, 9, 26, 24, 16, 11]. This kind of ap-
proach is widely used to detect and identify bad data in power systems, such
as power flow analysis [11] and topology errors detection [16]. The detection
methods include primary detection for residual detection [4] and inflection point
detection [8]. However, the application domains of these approaches are very



limited, since they only target at detecting data injection attacks with minor
data alternation [12].

Our work is different from all previous work with a stronger attack model, in
which we assume powerful attackers can even evade rule-based detection schemes
by understanding each variable’s threshold in advance. Meanwhile, the state
estimation solution also has the limitation of handling arbitrary data injection.

7 Conclusion

In this paper, we propose a novel intrusion detection system, named SRID, to
detect intrusion in SCADA systems. Our main defense focus is the false data
injection attack and SRID can not only detect such attack but also deduce the
possible attack origins in an effective and efficient way. In addition, we propose a
new graph-based detection model which combines the state alternation vectors
and state relation graph. From the evaluation results, we can see our new design
can effectively detect various data injection attacks and infer attack origins.
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