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ABSTRACT

Conficker [26] is the most recent widespread, well-known
worm/bot. According to several reports [16, 28], it has in-
fected about 7 million to 15 million hosts and the victims are
still increasing even now. In this paper, we analyze Conficker
infections at a large scale, including about 25 millions vic-
tims, and study various interesting aspects about this state-
of-the-art malware. By analyzing Conficker, we intend to
understand current and new trends in malware propagation,
which could be very helpful in predicting future malware
trends and providing insights for future malware defense.
We observe that Conficker has some very different victim
distribution patterns compared to many previous genera-
tion worms/botnets, suggesting that new malware spreading
models and defense strategies are likely needed. Further-
more, we intend to determine how well a reputation-based
blacklisting approach can perform when faced with new mal-
ware threats such as Conficker. We cross-check several DNS
blacklists and IP/AS reputation data from Dshield [6] and
FIRE [7], and our evaluation shows that unlike a previous
study [18] which shows that a blacklist-based approach can
detect most bots, these reputation-based approaches did rel-
atively poorly for Conficker. This raised the question, how
can we improve and complement existing reputation-based
techniques to prepare for future malware defense? Finally,
we look into some insights for defenders. We show that
neighborhood watch is a surprisingly effective approach in
the Conficker case. This suggests that security alert shar-
ing/correlation (particularly among neighborhood networks)
could be a promising approach and play a more important
role for future malware defense.

1. INTRODUCTION

Conficker worm (or bot) [26] first appeared in November
2008 and since then it has rapidly and widely spread in the
world within a short period. It exploits a NetBIOS vulner-
ability in various Windows operating systems and utilizes
many new, advanced techniques such as a domain genera-
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tion algorithm, self-defense mechanisms, updating via Web
and P2P, and efficient local propagation. As a result, it has
infected millions of victims in the world and the number is
still increasing even now [16, 28].

It is clear that the complex nature of Conficker makes it
one of the state-of-the-art malware, and therefore the analy-
sis of Conficker is very important in order to defend against
it. A full understanding of Conficker can also help us in
comprehending current and future malware trends. Exist-
ing research of Conficker analysis mainly falls into two cat-
egories. The first focuses on analyzing the Conficker bi-
nary and its behavior, revealing its malicious tricks such as
the domain generation algorithm [23, 30]. In this direction,
SRI researchers [23] and the Honeynet project [30] already
provided excellent reports that analyzed Conficker in great
detail. The second research category mainly focuses on an-
alyzing the network telescope data [2] or DNS sinkhole data
[13] to reveal the propagation pattern and victim distribu-
tion characteristics of Conficker on the Internet. There are
very few studies in this direction, which is probably because
it is very hard to obtain large scale real-world data of vic-
tims and the amount of data should be large enough to cover
victims’ global behavior. CAIDA [2] and Team Cymru [13]
provided some initial reports which contain some very basic
statistics on the scanning pattern and propagation informa-
tion of Conficker. However, for a worm/bot that has infected
so many victims and has so much potential to damage the
Internet, it deserves a much deeper study. Such study is
necessary because by analyzing this state-of-the-art botnet,
we can gain more knowledge of current malware, e.g., how it
differs from previous generation malware and whether such
differences represent future trends or not. These deeper in-
vestigations could also provide new insights in developing
new detection and defense mechanisms for current and fu-
ture malware.

In this paper, we attempt to provide a deeper empiri-
cal measurement study of Conficker. We have collected a
large-scale data set which contains almost 25 million Con-
ficker victims with the help of Shadowserver.org (details on
data collection are discussed in Section 3). We believe such
scale is large enough to uncover Conficker’s global patterns.
We provide an extensive measurement of various distribu-
tion patterns of Conficker victims. Furthermore, we use
a comparison- and cross-check-based methodology in our
measurement study. We study the similarities and differ-
ences between Conficker and several other publicly reported
worms/botnets. Then we analyze how these differences may
affect existing reputation-based detection approaches. We



also investigate possible aspects that may be useful for Con-
ficker and future malware defense.
In short, this paper makes the following contributions:

e We provide a large-scale empirical study of almost 25
million Conficker victims. By analyzing this data, we
reveal many interesting aspects that were previously
unknown and show that Conficker victims exhibit a
very different distribution pattern from many previ-
ously reported botnets or worms. This difference could
be a new trend or some ignored facts that are poten-
tially important for future malware defense. Detailed
information is in Section 4.

e We evaluate the effectiveness of existing reputation-

based approaches for detecting emerging malware threats.

They are considered as promising in defending against
unknown malware compared to traditional signature-
based approaches [1]. Through cross-checking several
DNS blacklists and reputation data from Dshield [6]

and FIRE [7], our evaluation shows that these reputation-

based approaches are not effective for Conficker de-
fense. This suggests that these reputation-based ap-
proaches need to be significantly improved and com-
plemented by other techniques. Detailed information
is in Section 5.

e We study the Conficker data and find that neighbor-
hood watch is surprisingly effective to detect or pre-
dict new victims. This could suggest that alert shar-
ing/correlation (among distributed collaborators, par-
ticularly neighborhood networks) could be an effec-
tive and promising technique to defend against future
emerging threats and it needs more attention for such
research. Detailed information is in Section 6.

2. RELATED WORK

Conficker binary analysis. Porras et al. from SRI In-
ternational provided a very extensive study of the Conficker
binary analysis [23]. They analyzed several variants of Con-
ficker and revealed how Conficker propagates, how it infects
others, how it evades anti-virus tools and how it updates
itself. This provided very detailed and valuable information
of Conficker behavior. The Honeynet project [30] also pro-
vides a detailed analysis of Conficker binary. These studies
also provide scanning tools for detecting Conficker victims
in the network.

Conficker data analysis. With the use of the telescope
data, researchers from CAIDA provided a simple analysis
on Conficker propagation [2]. The Telescope data mainly
contains scanning traffic from Conficker victims, which re-
veals Conficker victim location and timing information to
display how Conficker emerges and spreads on the Internet.
However, such data is not complete due to the size limit of
(passive) monitoring networks. Recently, researchers started
to use the DNS sinkholing technique [13] to collect much
more accurate Conficker victim data. A report from Team
Cymru[13] analyzed the behavior of Conficker victims and
provided some general distribution and propagation infor-
mation. However, there is still a lack of some deep analysis
of Conficker victims such as how different the victims are
from previous malware. This paper is a first attempt to
provide an empirical deep study of Conficker victims, reveal

how they are distributed differently from previous genera-
tion malware, and how this affects current reputation-based
defense mechanisms. In addition, we want to understand
if there are some effective techniques for early detection of
future variations of Conficker.

3. DATA COLLECTION

An interesting feature of Conficker is the resilient function
of updating itself. To avoid detection, it automatically gen-
erates new domain names (of updating servers) [23, 30] and
connects to those domain names to download an updated
version of itself. This function greatly supports Conficker to
increase the survivability and resilience. However, once the
domain generation algorithm was cracked by researchers, it
also provides a way to sinkhole and track the victims. By
registering new domain names that will be used by Con-
ficker victims on controlled servers, defenders can collect
visits from hosts infected by Conficker. This approach is
widely known as DNS sinkholing and has been successfully
adopted by researchers that study Conficker [13].

With the aid of ShadowServer.org, we have collected the
Conficker sinkhole data captured from January 1, 2010 to
January 8, 2010. During this period, we observed 24,912,492
unique IP addresses of Conficker victims. We note that the
accurate counting of worm/botnet victims is not an easy
task because of the existence of DHCP, NAT, and many
other issues [31, 25]. For example, Stone-Gross et al. [25]
pointed out that there is a slight difference between the num-
ber of IP addresses and the number of real infected hosts.
This is the limitation of almost all existing worm/botnet
measurement studies. We do not intend to solve this prob-
lem in this paper. We simply report our observations from
our collected data. Although the number may not be exact,
with such a large scale it at least provides an estimation of
overall characteristics and statistics of the Conficker botnet.

To obtain more interesting results, we surveyed previous
work [15, 14, 19, 18, 31, 32, 24] about the behavior of ne-
farious worms and bots/botnets. They are used to compare
with our Conficker result and to help us track whether in-
fection trends have changed. Based on the information they
provide, we selected seven measurement studies, which are
summarized in Table 1. Of these, three are well-known net-
work worms [15, 14, 19] and four are botnets [18, 31, 32,
24]. Note that some studies of botnets do not specify botnet
names in their work, but they show the result of malicious
nodes that send spam emails. Since most spam emails are
delivered by botnets [18], we can reasonably assume that
their studies represent the behavior of some bots or mal-
ware.

4. WHOISWORKING FORTHE CONFICKER

BOTNET?

In this section, we provide a basic but important network-
level examination, which demonstrates fundamental charac-
teristics of Conficker victims. We review how Conficker vic-
tims are distributed over the IP address space and ASes.
Also, we investigate the bandwidth of Conficker victims and
domain names that Conficker victims belong to. Finally, we
survey portions of countries where Conficker victims heavily
exist. Some of them are already provided by other studies
[2, 13], but our work is more than just providing basic mea-
surement results. To comprehend the radical alteration of



Malware [Work] | Type Data Source Data Collection Time
Botnet 1 [18] Botnet | Sinkhole server Aug. 2004 ~ Jan. 2006
Botnet 2 [31] Botnet | Hotmail Jun. 2006 ~ Sep. 2006
Botnet 3 [32] Botnet | Spamhaus Nov. 2006 ~ Jun. 2007
Waledac [24] Botnet | Infilatrion into Waledac | Aug. 2008 ~ Sep. 2009
CodeRed [15] Worm | Measurement Jul. 2001 ~ Oct.2001
Slammer [14] Worm | Measurement Jan. 2003

Witty [19] Worm | Measurement Mar. 2004

Table 1: Data source of previous worms/bots for comparison.

malware, we compare Conficker victims’ network-level char-
acteristics with those of previous well-known bots or worms.

4.1 Distribution Over Networks

We plotted each victim’s IP address to determine how
Conficker victims are distributed over the IP address space
and found that they are not uniformly distributed in the
whole IP address space; instead the distribution is highly
biased, mostly concentrated in some specific ranges.

Result 1. (Distribution over the IP address space)
Most of hosts infected by Conficker are concentrated in sev-
eral specific IP address ranges.
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Figure 1: Distribution of infected hosts over IP ad-
dress.

Figure 1 depicts the distribution of victims over the IP
address space. The presence of several wide, sharp spikes,
which represent densely infected areas, reveals that the vic-
tims are not uniformly distributed. Since the IP address
ranges within these wide spikes could be regarded as more
vulnerable, we inspected three notable wide spikes in detail.
They are in the range of (109.* - 125.%), (77.* - 96.*), and
(186.* - 222.*) and they cover around 87% of all victims.
In particular, the widest and most prominent spike which is
in the range of (109.* - 125.*), includes 9,303,423 infected
hosts and accounts for 37.34% of the total number of Con-
ficker victims. To get a more detailed view, we narrowed
down the scope from the ranges to more specific networks.
In the widest spike, we found that 123.* and 124.* networks
are the main contributors. They comprise 1,701,438 infected

hosts and account for 6.83% of all victims. We analyzed fur-
ther and discovered that there are 40,278 Conficker victims
in the 123.19.* network, which is around 61.9% of all possi-
ble IP addresses in that /16 subnet. Similar characteristics
were observed in nearby networks such as the 123.22.*% and
the 123.23.%!

Result 1.1. (Distribution over IP address space -
Comparison) Some portions of IP address ranges were al-
ready affected by the previous botnets, but some ranges such
as 109.% - 125.% are unique to Conficker.

Comparing the distribution of Conficker victims over the
IP address space with that of previous bots, we find that
some ranges are similar to the previous results and some are
unique to Conficker. The ranges of (77.* - 96.*%) and (186.* -
222.*) are widely known as major locations of the Waledac
bot [24]. Yet the interesting thing is that while the range
of (109.* - 125.%) is one of the significant locations of Con-
ficker, Waledac has no significant number of victims in that
range. In addition, [18] investigated the IP address ranges
of hosts infected by bots and they denoted that the ranges
of (80.*% - 90.*) and (210.* - 220.*) were major locations of
bots, which is similar to Waledac analysis. However, both
previous studies still did not point out the range of (109.*
- 125.%) as a heavy contributor of bots. We tried to under-
stand why the range of (109.* - 125.*) was not seen before.
After investigating the data in this range, we concluded that
the reason is most likely a change of infection trend, and we
will elaborate on this in Result 2.1.

Since it is nearly impossible to monitor the entire Internet,
it is more efficient to focus on specific (suspicious) networks
that are more likely to contain commands directed by a bot-
master. The IP address ranges within wide spikes, which are
shown in Figure 1, can be good candidates that need to be
focused.

Insight from Result 1 and 1.1 (Monitoring Net-
works more efficiently) It is impossible to monitor all the
IP addresses on the Internet, but we can monitor a limited
number of specific ranges to efficiently detect commands and
attacks in infected networks. Fven though the ranges may be
different for each botnet, there are still some common parts
and they are good candidate ranges to monitor.

1Since the 123.* network is in Class A network, it seems
that there is no meaning in splitting it into subnetworks.
However, people commonly split Class A networks into sev-
eral /16 subnets to manage them efficiently. As in the case
of 123.* network, we found that it is divided and assigned
to several network providers. The 123.19.* network is one
of them and it is assigned to VietNam Post and Telecom
Coorperation and its inetnum is 123.19.0.0 - 123.19.255.255.



Representing identities of Conficker-infected hosts by IP
address is often preferable in a way that it is precise and
elaborate. However, the number of the infected IP addresses
is so large that this makes it hard to grasp the global view
of Conficker victims. Hence, we use the Autonomous Sys-
tem (AS), which is a useful method for clustering hosts on
the Internet for easier management and has been applied in
previous measurement work, to group the hosts infected by
Conficker.

Result 2. (Distribution over ASes) Of all infected
hosts, the top two ASes account for 28.37% of all victims
and top 20 ASes cover 52.54% of all victims. In particular,
most of the top rated ASes are located in Asia.

Conficker victims are concentrated in a few ASes and most
of the top infected ASes are located in Asia. As shown in
Table 2, around 30% of infected hosts belong to one of only
two ASes and more than 50% of infected hosts belong to one
of the (top) 20 ASes. Most highly infected ASes are mainly
distributed in Asia, particularly in China. This result also
suggests that an approach to detect malicious hosts based
on ASes would be practical.

ASN | # Host | AS Name Country
4134 | 2825403 | CHINA-BACKBONE China
4837 | 1435411 | CHINA169-BACKBONE China
7738 | 385672 TELECOMUNICACOES Brazil
3462 | 280957 HINET Taiwan
45899 | 273577 VPNT-AS-VN Vietnam
27699 | 260848 TELECOMUNICACOES Brazil
9829 | 248444 BSNL-NIB India
8167 | 237465 TELESC Brazil
3269 | 231020 ASN-IBSNAZ Italia
9121 | 207849 TTNET Turkey
9394 | 195088 TELEFONICA China
4812 | 182015 CRNET China
4788 | 180876 CHINANET-SH-AP Malaysia
8402 | 141130 TMNET-AS-AP Russia
8151 | 138567 CORBINA-AS Mexico
17974 | 137991 UNINET Indonesia
4808 | 137672 TELKOMNET-AS2-AP China
3352 | 135276 CHINA169-BJ China
8708 | 128228 TELEFONICA-DATA-ESPANA | Romania
3320 | 126520 RDSNET Germany

Table 2: Conficker victims in the top 20 ASes.

Result 2.1. (Distribution over ASes - Comparison)
Even though the top two ASes were also sources of previous
botnets, most of other top rated ASes are newly emerged in
the Conficker case.

By comparing the result of the distribution over ASes with
that of previous bots, we find that even if there are common
ASes between Conficker and previous bots, there is a sig-
nificant difference in the locations of infected ASes. Some
studies [18, 31, 32] investigated which ASes are the major
sources of the botnets that deliver spam emails?. We com-
pare their findings with our result and denote it in Table
3. In [18], the authors analyzed data collected in 2004 -

2In [32], they only present the top five of ASes, and that is
why we could not compare the whole list.

2006 and pointed out that most of the bots are located in
North America (particularly in USA), while in [31] and [32]
in which data was collected in 2006 - 2007, it was empha-
sized that bots spread widely over the world. However, in
the case of Conficker, ASes in the USA are no longer shown
in the top 20 list. Instead, most highly infected ASes are
located in Asia and South America.

From this result, we conclude that the trend of major loca-
tions of bot infected hosts is still changing; (i) mainly located
in North America, (i) widely spread over the World, (i)
popular in Asia and South America. This trend guides us
to observe Asia and South America more closely than North
America, which used to be the major source of spam email
when we built blacklists to prevent spam at the time. It is
important that the trend of major sources of bots is chang-
ing. Also, we find that four ASes in Conficker are never seen
in previous results. Two of them are in Asia (Vietnam and
India) and two of them are in South America (Brazil).

Insight from Result 2 and 2.1. (Change of Infec-
tion Trend) North America used to be the main contribu-
tors of botnets, but now Asia and South America contribute
more. This means that the locations of the main sources of
botnets are changing and we may chase this trend (e.g., new
malware spreading models and defense strategies are proba-
bly needed).

4.2 Distribution Over Domain Names

In this section, we inspect the domain names of each vic-
tim using DNS reverse lookup.®> A domain name indicates a
group in which a host belongs and it can be a good way to
reveal the host itself because domain names are expressed
in easy and comprehensible words.

Result 3. (Distribution over Domain Name) The
.br, .net and .cn domains cover around 24.42% of Conficker
victims. Interestingly, one of the third level domains covers
around 7% of infected hosts, which means it contains more
than 1,700,000 victims.

As shown in Table 4, only a few domains account for about
20% of hosts infected by Conficker. This does not solely ap-
ply to top level domains but to all second level domains
and third level domains as well. In the case of top and sec-
ond level domain names, their scope is quite broad and it
is hard to find any big advantage when compared to IP ad-
dress range or AS number. However, for third level domain
names, it is possible to focus on small sets of victims. It is
useful to monitor victims because the top third level domain
includes numerous Conficker victims. In particular, we find
that domain 163data.com.cn accounts for 6.88% of infected
hosts. Also, more than 99% of victims in 163data.com.cn in-
clude the word dynamic in their fourth level domain names.
From this, we can guess that they are using dynamic IP ad-
dresses, as their names imply. This result is similar to [31]
which uncovers dynamic IP addresses as a main source of
most spam emails.

3In our DNS reverse lookups, about 49% of victims did
not return valid results and therefore we labeled them as
“Unknown”, shown in Table 4. Since previous studies also
showed similar rates of “unknown” domains, we leave them
in the table.



Conficker Botnet 1 [18] Botnet 2 [31] Botnet 3 [32]
ASN Country || ASN | Country || ASN | Country ASN Country
4134 China 766 Korea 4134 China 4766 Korea
4837 China 4134 China 4837 China 19262 USA
7738 Brazil 1239 USA 4776 Australia || 3215 France
3462 Taiwan 4837 China 27699 | Brazil 4837 China
45899 | Vietnam || 9318 Japan 3352 Spain 4134 China
27699 | Brazil 32311 | USA 5617 Poland no info. | no info.
9829 India 5617 Poland 19262 | USA no info. | no info.
8167 Brazil 6478 USA 3462 Taiwan no info. | no info.
3269 Italia 19262 | USA 3269 Ttaly no info. | no info.
9121 Turkey 8075 USA 9121 Turkey no info. | no info.

Table 3: Top 10 ASes hosting Conficker and Spamming Botnets.

Top Level | Percentage || Second Level Percentage || Third Level Percentage
Unknown | 48.81% Unknown 48.81% Unknown 48.81%
br 8.83% com.cn 6.89% 163data.com.cn 6.88%
net 8.65% net.br 4.61% veloxzone.com.br 1.96%
cn 6.94% com.br 4.20% dynamic.hinet.net 1.86%
ru 5.01% hinet.net 1.91% telesp.net.br 1.69%
it 2.36% telecomitalia.it | 1.55% retail.telecomitalia.it 1.46%
ar 1.54% corbina.ru 0.99% brasiltelecom.net.br 1.39%
in 1.35% ny.adsl 0.93% broadband.corbina.ru 0.99%
com 1.21% com.mx 0.90% kd.ny.adsl 0.93%
mx 1.16% com.ar 0.84% prod-infinitum.com.mx | 0.85%

Table 4: Top 10 Domain Names hosting Conficker Victims in each level.

Result 3.1. (Distribution over Domain Name -
Comparison) The .net domain is still prevalent, but new
domains such as .br, .cn, and .ru have recently emerged as
heavy resources of botnets. The .com and .edu domains used
to be the magor sources of worms, but now they cast off the
yoke of malicious domains.

Comparing the domain result with previous work, we found
that a few domains that were not previously seen in Con-
ficker. Also, we found that .com and .edu domains, which
used to be nefarious domains, are now relatively clean. Un-
fortunately, because the previous work does not show sec-
ond level and third level domain distributions, we could only
compare top level domains. In previous studies, top contrib-
utors of infected domains are .net, .com and .edu. However,
in the case of Conficker, things have changed. While the .net
domain is still prevalent, there are newly emerged domains
which are not shown in the previous work: .cn, .ru, .in, and
.mz. All domains that are newly seen represent their coun-
tries and we call these ccTLDs (Country Code Top Level
Domains). The report from Verisign [29] shows that the
registration rate of above ccTLDs has increased explosively
for the past three years. This implies that the number of
hosts in newly registered domains have increased exponen-
tially. Therefore we may monitor more closely whether they
are infected by malware or not, since they may not be on
any blacklists. The more interesting part is .edu and .com
domains are no longer serious sources of malware. Of course,
there are infected hosts which still belong to those domains,
but its coverage is reduced to 1.21% in .com and 0.0096% in
.edu. This result implies that the networks in .com and .edu
domains are probably better managed and protected than
before. The comparison result is summarized in Table 5.

Result 3.2. (Distribution over Domain Name -
Sensitive Domain Name) There are Conficker victims in
government networks and companies listed in Fortune 100,
even though the number of infected hosts is small.

Besides sending DDoS packets and spam emails, a botnet
can steal sensitive information from victims [11]. If hosts
infected by a bot belong to critical networks such as gov-
ernment and military networks that contain sensitive infor-
mation, a botmaster can steal important information from
them. Using our Conficker data, we investigated how many
victims are affiliated with government or military networks
and we found 714 such victims. Surprisingly, victims in gov-
ernment networks are not limited to a few countries, instead
they are spread around 70 countries including U.S.A., Park-
istan, India and China. Also, we investigated how many
victims are in well-known companies. To do this, we used
the Fortune 100 Company List [8] and we found 2,847 such
hosts. Conficker victims still exist within several reputable
companies such as HP and IBM.

Insight from Result 3, 3.1 and 3.2. (Watch out
for new and sensitive Domains!) [t is nearly impossible
to monitor all domain names. However, we have observed
that newly registered domains are more vulnerable and more
easily infected by Conficker. Hence, it is necessary to closely
monitor those recently registered domains. In addition, even
though the number of victims is not large, a botmaster of
Conficker can steal sensitive information from government
and top rated company networks.

4.3 Distribution over Bandwidth

Besides IP address, AS and domain names, bandwidth
gives us information that shows us what kinds of networks
Conficker victims belong to. It also helps to predict the



Conficker | CodeRed Il Slammer Il Witty
Top level | Percentage || Top level | Percentage || Top level | Percentage || Top level | Percentage
Unknown | 48.81% Unknown | 47.22% Unknown | 59.49% net 33%
br 8.83% net 18.79% net 14.37% com 20%
net 8.65% com 14.41% com 10.75% Unknown | 15%
cn 6.94% edu 2.37% edu 2.79% fr 3%
ru 5.01% tw 1.99% tw 1.29% ca 2%
it 2.36% ip 1.33% au 0.71% ip 2%
ar 1.54% ca 1.11% ca 0.71% au 2%
in 1.35% it 0.86% ip 0.65% edu 1%
com 1.21% fr 0.75% br 0.57% nl 1%
mx 1.16% nl 0.73% uk 0.57% ar 1%

Table 5: Top 10 Domain Names hosting Conficker,

power of the botnet. For instance, if we know there are one
million Conficker victims in the world and most Conficker
victims are in networks with bandwidth less than 1 Kbps,
we deduce that it could generate 1 Gbps traffic in the best
case. To measure the bandwidth, we use Tmetric [27] which
sends ICMP packets to the target network and provides a
measured bandwidth result. Since Tmetric needs to con-
tact the target network to estimate the bandwidth, we can
not get the bandwidth result without live target networks
and hosts. It takes quite a long time to contact each host
and measure the bandwidth, so we only contact one host in
the subnetworks (/24) where Conficker victims exist. We
reasonably assume that hosts in the same subnetwork (/24)
have the same bandwidth.

Result 4. (Bandwidth Distribution) About 99% of
Conficker victims have bandwidth less than 1 Mbps and this
means that most of them are ADSL or Modem/Dialup users.

We find that most victims are using Modem/Dialup or
ADSL networks. As shown in Figure 2 (a), about 90% of
Conficker victims are in the network whose bandwidth is less
than 200 Kbps and around 99% of victims are residing in the
network whose bandwidth is less than 1 Mbps. This result
is similar to [10] and [31] which denote most bots are using
ADSL or Dialup networks. When we conducted this mea-
surement, we found interesting patterns between the band-
width of a subnet and the number of infected hosts in the
subnet.

Result 4.1. (Bandwidth Distribution - relation
with the numbers of victims) The networks that have
low bandwidth are likely to have more Conficker victims than
those with high bandwidth.

We suspect that there is a relationship between the band-
width of a network and the number of infected hosts of the
network. As shown in Figure 2 (b), the bandwidth of the
subnet is inversely related to the number of infected hosts
in the subnet. We think that this pattern is related to the
manageability of each network. A network with high band-
width indicates consuming high setup cost and it also means
the network is that worthy. And we could infer that such
worthy network is under reasonably good maintenance.

Insight from Result 4 and 4.1. (Examine ADSL
or Modem/Dialup networks) Hosts with ADSL or Mo-
dem/Dialup connections are still very vulnerable.

Codered, Slammer and Witty.

4.4 Distribution over Geographic L ocation

Result 5. (Geographic Location) 34.47% of infected
hosts are located in China, which is larger than the total
number of Conficker victims from the next top eight coun-
tries.

As shown in Table 6 on the distribution over countries,
the top ten countries include over 70% of Conficker victims,
China ranks number one by a large margin. Conficker vic-
tims are distributed over most of the world including Asia,
Europe, and South America, but interestingly, only 1.1% of
victims are located in North America. This result is some-
what different from previous infection patterns.

Result 5.1. (Geographic Location - Comparison)
In previous worms and botnets, most the infected hosts were
located in North America - especially in USA, but in Con-
ficker, most victims are located in the Asian region - espe-
cially in China.

We compare the country distribution with that of other
worms and bots to determine whether it is different or sim-
ilar and we find that the location of heavy malware contrib-
utors is changing. Even though we could not get the exact
country distribution from the previous work [18] [31], we are
able to estimate which country had more victims based on
their distribution over ASes. From Table 6 and 3, we ob-
serve that worms prevalent several years ago were mainly
located in North America. In previous botnets, [31] and [32]
show that victims are mainly located in both Asia and North
America, but [18] and [24] denote that most victims are lo-
cated in North America. However, contrast to the results
of previous work, we find that Conficker victims are mainly
located in Asia and not in North America, where only 1.1%
of victims are located. Therefore, changing monitoring focus
from North America to Asia seems reasonable.

Insight from Result 5 and 5.1. (From North Amer-
ica to Asia - Confirmed) We clearly observe that the hosts
infected by Conficker are mainly located in Asia and not in
North America, as also shown in Result 2 and 2.1.

5. HOW WELL DO REPUTATION-BASED
DETECTION SYSTEMS DETECT CON-
FICKER?

In this section, we examine how well current reputation-
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Figure 2: Bandwidth measurement of Conficker victims.
Conficker Il Waledac Il CodeRed Il Slammer Il Witty

Country % Country | % Country % Country % Country %

China 34.47% || USA 17.34% USA 43.91% || USA 42.87% || USA 26.28%

Brazil 9.43% UK 7.76% Korea 10.57% || Korea 11.82% || U.K 7.27%

Russia 7.39% France 7.04% China 5.05 % || Unknown 6.96% Canada 3.46 %

India 4.45% Spain 5.90% Taiwan 4.21% China 6.29% China 3.36%

Ttaly 3.56% India 5.50% Canada 3.47% Taiwan 3.98% France 2.94%

Vietnam 2.81% no info. | no info. || U.K. 3.32% Canada 2.88% Japan 2.17%

Taiwan 2.59% no info. | no info. || Germany 3.28% Australia 2.38% Australia 1.83%

Germany | 2.03% no info. | no info. || Australia 2.39% U.K. 2.02% Germany 1.82%

Argentina | 2.00% no info. | no info. || Japan 2.31% Japan 1.72% Netherlands | 1.36%

Indonesia | 1.85% no info. | no info. || Netherlands | 2.16% Netherlands | 1.53% Korea 1.21%

Table 6: Top 10 countries where Conficker, Waledac, Codered, and Slammer are located.

based detection systems detect Conficker. A DNS blacklist
is an effective approach to detect malicious hosts and net-
works based on reputation [1]. We investigate how well it
detects Conficker victims to verify its effectiveness. Also,
we examine other reputation-based detection systems such
as Dshield [6] and FIRE [7] to check if they could successfully
detect Conficker victims.

5.1 DNSBlacklist

We have investigated several well-known blacklists such
as DNSBL [5], SORBS [20], SpamHaus [22], and SpamCop
[21] to see how many victims of Conficker are on their black-
lists. We tested all 24,912,492 infected hosts and we found
out that only 4,281,069 hosts are on blacklists which is only
17.18% of all victims.

Result 6. (DNS Blacklist) DNS blacklists only cover
a small portion of Conficker victims. More specifically, only
17.18% of Conficker victims are found on any of four DNS
blacklists.

Our investigation result is quite different from the previ-
ous work [18] which shows about 80% of bot infected hosts
are already on some blacklists and we believe that the dis-
parity is caused by the difference of distribution of infected
hosts. As we mentioned in Section 4.1 and 4.2, the distri-

bution of Conficker victims (over IP address space, ASes,
Domain names and Countries) is different from the previ-
ous work, and this makes it hard to build effective blacklists
for detecting emerging malicious hosts/networks, because
blacklists highly depend on the reputation of hosts and net-
works obtained from their previous records (and currently
heavily rely on spam activity records).

Insight from Result 6. (Unfortunately, blacklists
can not help us all the time) Only less than 20% of vic-
tims are on DNS blacklists, which means that we need better
ways to detect future emerging malware.

5.2 Dshield and FIRE

Some other reputation-based detection systems are also
provided to complement DNS blacklists, and we need to in-
vestigate their performance of detection. Since most DNS
blacklists are mainly to detect hosts or ASes sending spam,
they may not detect other malicious behaviors (potentially)
performed by (emerging) infected hosts. There are several
studies that try to detect network scanning attacks or web-
based attacks and Dshield [6] and FIRE [7] are good exam-
ples of them. Dshield provides information to detect hosts or
ASes sending suspicious network scanning/attacking pack-
ets, and FIRE [7] lists malicious ASes which frequently host



rogue networks by measuring their reputation. We plan to
inspect how many Conficker victims are notified by Dshield
and FIRE.

Result 7. (Dshield) Only 0.33% of victims of Conficker
are found on the list of malicious IP addresses reported by
DShield, and most of the top ASes infected by Conficker are
not on the malicious AS list of Dshield.

Checking Conficker victims against the list provided by
Dshield [4], we found that only a small portion of hosts
and ASes are on the list. We investigated 588,797 IP ad-
dresses presented by Dshield, and they denoted world-wide
attackers/scanners that were detected by all kinds of IDSs
and reported to DShield. Since one of the infection vectors
in Conficker is random IP scanning [17], we expect a large
portion of Conficker victims to show up in Dshield. How-
ever, we only find 82,856 hosts from the list. This shows
that these Conficker victim hosts are probably easy targets
of many previous malware. However, DShield is still not
good at catching major portions of new emerging malware
such as Conficker. Similarly, we examined the malicious AS
list provided by Dshield and we only observed 83 Conficker
infected ASes out of 10,584 ASes given by Dshield. Only
one of them (AS4812) is a serious contributor of Conficker
(ranked 12th among infected ASes) but the rest are not as
critical as AS4812. Most of them cover less than 0.02% of
Conficker victims.

Result 8. (FIRE) Most highly infected ASes by Con-
ficker are not reported by FIRE.

We compared our infection list of ASes with the results
provided by FIRE as well and we want to know whether
FIRE is helpful in detecting Conficker victims. Although
FIRE denotes AS413/ as the 8th most malicious AS in its
list, most of other heavily infected ASes by Conficker are
not shown in the top 500 malicious ASes of FIRE. Some of
the main contributing ASes to Conficker have never shown
up on FIRE’s list.

Insight from Result 7 and 8 (New and com-
plementary detection approaches are needed) DNS
blacklists, Dshield and FIRE detect only a small portion of
Conficker victims. This means that these reputation-based
approaches are not the perfect solution. We need to im-
prove them significantly and complement them with other
approaches.

When we tested Dshield and FIRE, we expected that
they could complement DNS blacklists, but the result is not
very positive. This implies that these reputation-based sys-
tems alone are far from enough to protect the Internet from
emerging threats. We believe that new detection systems
based on anomalous behaviors of malware could be a good
complementary approach to them.

6. CANNEIGHBORHOOD WATCH HELP?

Conficker still uses network scanning to infect other hosts
on the Internet as previous worms and bots did, and it also
adopts several advanced skills to infect hosts efficiently. The
spreading techniques of Conficker can be classified into two
categories [3, 17]; (i) infecting random hosts and (it) in-

fecting nearby hosts. Conficker has a function of scanning
randomly selected IP addresses. Although this will help
Conficker to spread globally, it is not probably very effi-
cient these days because most networks are protected by fire-
walls or Network Intrusion Detection/Prevention Systems.
To propagate more efficiently, Conficker adopts several in-
teresting techniques to infect hosts nearby; (1) an ability to
infect other hosts in the same subnet, (2) an ability to in-
fect hosts in the nearby subnets, and (3) an ability to infect
portable storage devices.

The diverse infection techniques of Conficker lead us to
ask this question: “Which vector is more effective to in-
fect hosts?”. Some previous studies suggested that second
approach - (i) infecting nearby hosts - is probably more
dominant in the Conficker case [17, 12]. We think that this
seems reasonable, because even though most networks are
protected well from outside threats, they are still open to in-
ternal attacks. However, they do not show concrete evidence
to support it.

To determine whether this hypothesis is correct, we con-
structed a test. Prior to explaining our test, we declare that
we will use /24 subnet as a basic unit in our test. And we
make the following definition to simplify the test. We define
two terms: (i) “camp” is the group of /24 subnets whose /16
subnet is the same and locations are close together, and (ii)
each /24 subnet is a “neighbor” of nearby /24 subnets in the
same camp. Sometimes, even if two /24 subnets are in the
same /16 subnet, their physical locations could be far from
each other. However, since our concept of “camp”is each /24
subnet with both nearby IP address and physical location,
we should consider its location as well. Based on the above
definition, we establish a hypothesis as follows. Of the two
infection vectors of Conficker, suppose the second infection
vector plays a dominant role, the infection pattern* of a /24
subnet will be similar to that of its “neighbors” in the same
“camp”. In other words, the hosts in nearby networks of in-
fected host are more likely to be selected as future victims
than randomly chosen hosts.

To evaluate this hypothesis, we have tested the following
scenarios. First, we divide hosts into /24 subnets and as-
sign each /24 subnet into a “camp” based on our definition.
Second, we investigate the infection pattern of each /24 sub-
net to see whether the infection pattern of each /24 subnet
is similar to its “neighbors”. We use Variance-Mean Ratio
(VMR) [9] for a numerical expression. In this test, we mea-
sure the mean and variance value of the numbers of infected
hosts of each /24 subnet in each “camp”, and calculate VMR
for each “camp”. If the value of VMR is less than one, dis-
tribution of the data set shows under-dispersion with mean
value in the center, which means that infection patterns of
/24 subnets in the “camp” are very similar to each other.

Result 9. (Neighborhood) Most /24 subnets show
stmilar infection patterns (numbers of infected hosts) with
their “neighbors”. The closer they are located with each other,
the more similar in their infection patterns.

We measured the VMR value of each “camp” and we found
that more than 70% of “camps” denoted that their /24 sub-
net members are similar to each other. From this result, we
reasonably infer that the dominant infection vector of Con-

*We use the number of infected hosts of /24 subnet as a
feature to represent an infection pattern.



# of all “camps” | # of “camps” whose /24 subnet members are similar to each other

Within Distance
~ 100km 85,246
= 200km 65,748
=~ 300km 54,415

62,121 (72.87%)
44,633 (67.88%)
36,495 (67.06%)

Table 7: The number of all “camps” and “camps” whose members are similar to each other.

ficker is to infect nearby hosts. The test result is shown
in Table 7. When we did this test, we got three types
of “camps” based on its geographical information. For in-
stance, if we set the distance metric for the “camp” as 100km
which means that all /24 subnets in the “camp” have the
same /16 subnet and they are within 100km of each other,
we found 85,246 “camps” from our data and we discovered
62,121 “camps” whose /24 subnet members are similar to
each other. We observed that more than 67% of “camps”
showed that their /24 subnet members are similar to each
other. The closer their locations are, the clearer this pattern
is shown. This result tells us that Conficker is more likely
to select nearby hosts than randomly chosen hosts and this
means Conficker victims are mainly infected by neighbor
networks/hosts. We deduce from this result that infection
from the inside could be more harmful than the threats from
the outside. Usually, most enterprise networks and ISPs pro-
tect their internal hosts using firewalls and IPS/IDS from
external attacks, but there are very few approaches to pro-
tect hosts from internal threats.

Result 9.1 (Detection based on neighborhood in-
formation) We could detect unknown victims by sharing
and correlating neighbor alert information, even if we only
know small sets of families and its neighbors.

Based on previous results, we propose an approach of de-
tecting (or early warning) emerging (unknown) infected /24
subnets using neighborhood information and we show that
the approach can detect unknown infected /24 subnets with
more than 90% of accuracy. From the above test, we find
that Conficker victims share their infection patterns with
their neighbors, and this finding gives us an intuition that
collecting and sharing neighborhood information would be
helpful to detect unknown malware or provide early warn-
ings. To validate this intuition, we have tested the simple
scenario of “We only have small portions of information of
benign and malicious hosts, but we can gather neighborhood
information. Then, how many unknown malicious hosts can
we detect (or predict) based on neighborhood information?”.

As a method of considering neighborhood information, we
use the K-Nearest Neighbor (KNN) classification algorithm,
because it is a very popular approach that classifies unknown
examples using the most similar “neighbors” in the known
examples. When we apply the KNN algorithm to our data,
we need the following preparations.

e define classes: in this test, we define two classes;
benign (normal /24 subnet) and malicious (/24 subnet
which has Conficker victims)

e collect data: we use our Conficker data for malicious
data, and we collected the same number of benign /24
subnets as malicious /24 subnets.

®As a result, we have 1,300,000 malicious /24 subnets (in-

e divide data: we randomly select 20% of data from
both data sets for training samples and other 80% of
data is used for testing.

After all preparation was completed, we used the KNN
algorithm (we use 3 for K and use IP address to calculate
the distance) to our data and found that it can detect un-
known infected /24 subnets with a high accuracy. As shown
in Table 8, we find that even if we only know a small part
of Conficker data (20%), we can still predict other infected
/24 subnets within more than 90% accuracy with reasonable
True Positive (TP) and False Positive (FP)® rates. This de-
tection result implies that if we share neighbor information,
we could detect unknown victims or provide early warnings
more efficiently.

TP rate | FP rate
91.65% 8.5%

Detection Accuracy
91.59%

Table 8: Accuracy, TP and FP rate of the Detection
Approach based on Neighborhood Information.

Insight from Result 9 and 9.1. (Neighborhood
watch) We observe that a large portion of victims could
be infected by mearby victims and find that it is very impor-
tant to share threat information with neighborhood networks.
And this insight implies that further research is needed for
developing new detection/defending approaches based on co-
operated/shared (alert) information (and probably in an ef-
ficient privacy-preserving way).

7. CONCLUSION

In this paper, we have studied a large-scale Conficker in-
fection data to discover (i) their distribution over networks,
ASes and etc, (ii) difference from previous bots/worms (iii)
the effectiveness of current reputation-based malware detec-
tion/warning systems, and (iv) some insight to help detect
future malware.

Our analysis of Conficker victims and cross-comparison
results allowed us to obtain profound insights of Conficker
victims. They also guide us to understand the trends of
malware infections and to find interesting ideas that can
aid the design of future malware detecting systems. We re-
vealed that current reputation-based malware detecting sys-
tems depending on previously known information are not
enough to detect most Conficker victims. This result sug-
gests that different kinds of (complementary) detection sys-
tems such as an anomaly-based detection system are needed.

fected by Conficker), and 1,300,000 benign /24 subnets
(NOT infected by Conficker or other malware).
STP denotes the rates that the detector classifies real mali-
cious networks correctly, and FP denotes the rates that the
detector classifies benign networks as malicious.




We provide a basis that proves the hypothesis of “A Con-
ficker bot is more likely to infect nearby hosts than ran-
domly chosen hosts” and we believe that it calls for more
research of detection systems which are based on watch-
ing/sharing/correlating neighborhood information.
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