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Fuzzing/Fuzz Testing

� Feed target applications with malformed inputs 
e.g., invalid, unexpected, or random test cases

� Proven to be remarkably successful

� E.g., randomly mutate well-formed inputs and runs 
the target application with the “mutations”the target application with the “mutations”

ApplicationFuzzer crash

Malformed 
Input
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Fuzzing is great

In the best case, malformed 
inputs will explore different 
program paths, and trigger 
security vulnerabilities
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However…
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security vulnerabilities



A quick example

1 void decode_image(FILE* fd){
2 ...
3 int length = get_length(fd);
4 int recomputed_chksum = checksum(fd, length);
5 int chksum_in_file = get_checksum(fd);
//line 6 is used to check the integrity of inputs
6 if(chksum_in_file != recomputed_chksum)
7   error();

re-compute a new 
checksum

read the attached 
checksum

� Malformed images will be dropped when the decoder 
function detects checksums mismatch

5

7   error();
8 int Width = get_width(fd);
9 int Height = get_height(fd);
10 int size = Width*Height*sizeof(int);//integer overflow
11 int* p = malloc(size);
12 ...

compare tow values
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Checksum: the bottleneck

Checksum is a common way to test the integrity 
of input data

Most mutations are blocked 
at the checksum test point
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if(checksum(Data)!= Chksum)



Our motivation

� Penetrate checksum checks!

Our Goal
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Our Goal
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Intuition 

� Disable checksum checks by control flow alteration

if(checksum(Data)!= Chksum)
goto L1;
exit();

L1:

� Fuzz the modified program

� Repair the checksum fields in malformed inputs 
that can crash the modified program
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L1:
continue();

Original programModified program
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Key Questions 

� Q1: How to locate the checksum test 
instructions in a binary program?

� Q2: How to effectively and efficiently fuzz for 
security vulnerability detection?security vulnerability detection?

� Q3: How to generate the correct checksum 
value for the invalid inputs that can crash the 
modified program?
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TaintScope Overview

Checksum 
Locator

Directed 
Fuzzer

Checksum 
Repairer

Modified 
Program

Crashed
Samples

Q1 Q2 Q3
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Execution Monitor

Locator Fuzzer Repairer

Hot Bytes Info
Instruction

Profile

Reports



A1: Locate the checksum test instruction

Checksum is usually used to protect a large number 
of input bytes

Data Chksum

Key Observation 1
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if(checksum(Data) !=   Chksum)

� Based on fine-grained taint analysis, we first find the 
conditional jump instructions (e.g., jz, je) that depend 
on more than a certain number of input bytes

� Take these conditional jump instructions as candidates



A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test, 
but most malformed inputs cannot

� We log the behaviors  of candidate 
conditional jump instructions
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A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test, 
but most malformed inputs cannot
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conditional jump instructions
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conditional jump instructions

① Run well-formed inputs, identify the 
always-taken and always-not-taken insts



A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test, 
but most malformed inputs cannot

� We log the behaviors  of candidate 
conditional jump instructions

14
Introduction TaintScope Conclusion

conditional jump instructions

① Run well-formed inputs, identify the 
always-taken and always-not-taken insts

② Run malformed inputs, also identify the 
always-taken and always-not-taken insts



A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test, 
but most malformed inputs cannot

� We log the behaviors  of candidate 
conditional jump instructions
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conditional jump instructions

① Run well-formed inputs, identify the 
always-taken and always-not-taken insts

② Run malformed inputs, also identify the 
always-taken and always-not-taken insts

③ Identify the conditional jump inst that 
behaves completely different when 
processing well-formed and malformed 
inputs



A2: Effective and efficient fuzzing 
� Blindly mutating will create huge amount of redundant test 

cases --- ineffective and inefficient  

1 void decode_image(FILE* fd){
2 ...

...
6 if(chksum_in_file != recomputed_chksu

goto 8;
7   error();

Directly modifying “width” or “height" 
fields will trigger the bug easily 

� Directed fuzzing:  focus on modifying the “hot bytes” that 
refer to the input bytes flow into critical system/library calls

� Memory allocation, string operation…

16
Introduction TaintScope Conclusion

7   error();
8 int Width = get_width(fd);
9 int Height = get_height(fd);
10 int size = Width*Height*sizeof(int);//integer overflow
11 int* p = malloc(size);
12 …



A3: Generate the correct checksum

� The classical solution is symbolic execution 
and constraint solving

Solving checksum(Data)== Chksum is hard or 

impossible, if both Data andChksum are symbolic values

� We use combined concrete/symbolic execution
� Only leave the bytes in the checksum field as symbolic values

� Collect and solve the trace constraints on Chksum when reaching the 
checksum test inst.

� Note that:

� checksum(Data) is a runtime determinable constant value.

� Chksum originates from the checksum field, but may be transformed, such 
as  from hex/oct to dec number, from little-endian to big-endian.
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Design Summary

� Directed Fuzzing

� Identify and modify “hot bytes” in valid inputs to 
generate malformed inputs
� On top of PIN binary instrumentation platform

� Checksum-aware Fuzzing� Checksum-aware Fuzzing

� Locate checksum check points and checksum fields. 

� Modify the program to accept all kinds input data

� Generate correct checksum fields for malformed 
inputs that can crash the modified program
� Offline symbolically execute the trace, using STP solver
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Evaluation

� Component evaluation

� E1:  Whether TaintScope can locate checksum 
points and checksum fields?

� E2:  How many hot byte in a valid input?

E3: Whether TaintScope can generate a correct � E3: Whether TaintScope can generate a correct 
checksum field?

� Overall evaluation

� E4: Whether TaintScope can detect previous 
unknown vulnerabilities in real-world applications?
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Evaluation 1: locate checksum points

� We test several common checksum algorithms, including 
CRC32, MD5, Adler32. TaintScope accurately  located the 
check statements.
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Evaluation 2: identify hot bytes

� We measured the number of bytes could affect the size 
arguments in memory allocation functions
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Evaluation 3: generate correct checksum 
fields

� We test malformed inputs in four kinds of file 
formats.

� TaintScope is able to generate correct checksum 
fields.
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Evaluation 4 :  27 previous unknown vulns

MS Paint Google Picasa Adobe Acrobat ImageMagick
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irfanview gstreamer Winamp XEmacs

Amaya dillo wxWidgets PDFlib



Evaluation 4 :  27 previous unknown vulns
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Evaluation 4:  27 previous unknown vulns

25
Introduction TaintScope Conclusion



Conclusion

� Checksum is a big challenge for fuzzing tools

� TaintScope can perform: 

� Directed fuzzing
� Identify which bytes flow into system/library calls.

dramatically reduce the mutation space.� dramatically reduce the mutation space.

� Checksum-aware fuzzing
� Disable checksum checks by control flow alternation.

� Generate correct checksum fields in invalid inputs.

� TaintScope detected dozens of serious  
previous unknown vulnerabilities.
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Thanks for your attention!


