
TaintScope: A Checksum-Aware

Directed Fuzzing Tool for Automatic

Software Vulnerability Detection

31st IEEE Symposium on Security & Privacy

Tielei Wang
1, Tao Wei1, Guofei Gu2, Wei Zou1

1Peking University, China
2Texas A&M University, US

Outline

� Introduction

� Background

� Motivation

� TaintScope

� Intuition

� System Design

� Evaluation

� Conclusion

2

......

Fuzzing/Fuzz Testing

� Feed target applications with malformed inputs
e.g., invalid, unexpected, or random test cases

� Proven to be remarkably successful

� E.g., randomly mutate well-formed inputs and runs
the target application with the “mutations”the target application with the “mutations”

ApplicationFuzzer crash

Malformed
Input

3
Introduction TaintScope Conclusion

Fuzzing is great

In the best case, malformed
inputs will explore different
program paths, and trigger
security vulnerabilities

4

However…

Introduction TaintScope Conclusion

security vulnerabilities

A quick example

1 void decode_image(FILE* fd){
2 ...
3 int length = get_length(fd);
4 int recomputed_chksum = checksum(fd, length);
5 int chksum_in_file = get_checksum(fd);
//line 6 is used to check the integrity of inputs
6 if(chksum_in_file != recomputed_chksum)
7 error();

re-compute a new
checksum

read the attached
checksum

� Malformed images will be dropped when the decoder
function detects checksums mismatch

5

7 error();
8 int Width = get_width(fd);
9 int Height = get_height(fd);
10 int size = Width*Height*sizeof(int);//integer overflow
11 int* p = malloc(size);
12 ...

compare tow values

Introduction TaintScope Conclusion

Checksum: the bottleneck

Checksum is a common way to test the integrity
of input data

Most mutations are blocked
at the checksum test point

6
Introduction TaintScope Conclusion

if(checksum(Data)!= Chksum)

Our motivation

� Penetrate checksum checks!

Our Goal

7

Our Goal

Introduction TaintScope Conclusion

Intuition

� Disable checksum checks by control flow alteration

if(checksum(Data)!= Chksum)
goto L1;
exit();

L1:

� Fuzz the modified program

� Repair the checksum fields in malformed inputs
that can crash the modified program

8

L1:
continue();

Original programModified program

Introduction TaintScope Conclusion

Key Questions

� Q1: How to locate the checksum test
instructions in a binary program?

� Q2: How to effectively and efficiently fuzz for
security vulnerability detection?security vulnerability detection?

� Q3: How to generate the correct checksum
value for the invalid inputs that can crash the
modified program?

9
Introduction TaintScope Conclusion

TaintScope Overview

Checksum
Locator

Directed
Fuzzer

Checksum
Repairer

Modified
Program

Crashed
Samples

Q1 Q2 Q3

10

Execution Monitor

Locator Fuzzer Repairer

Hot Bytes Info
Instruction

Profile

Reports

A1: Locate the checksum test instruction

Checksum is usually used to protect a large number
of input bytes

Data Chksum

Key Observation 1

11
Introduction TaintScope Conclusion

if(checksum(Data) != Chksum)

� Based on fine-grained taint analysis, we first find the
conditional jump instructions (e.g., jz, je) that depend
on more than a certain number of input bytes

� Take these conditional jump instructions as candidates

A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

� We log the behaviors of candidate
conditional jump instructions

12
Introduction TaintScope Conclusion

conditional jump instructions

A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

� We log the behaviors of candidate
conditional jump instructions

13
Introduction TaintScope Conclusion

conditional jump instructions

① Run well-formed inputs, identify the
always-taken and always-not-taken insts

A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

� We log the behaviors of candidate
conditional jump instructions

14
Introduction TaintScope Conclusion

conditional jump instructions

① Run well-formed inputs, identify the
always-taken and always-not-taken insts

② Run malformed inputs, also identify the
always-taken and always-not-taken insts

A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

� We log the behaviors of candidate
conditional jump instructions

15
Introduction TaintScope Conclusion

conditional jump instructions

① Run well-formed inputs, identify the
always-taken and always-not-taken insts

② Run malformed inputs, also identify the
always-taken and always-not-taken insts

③ Identify the conditional jump inst that
behaves completely different when
processing well-formed and malformed
inputs

A2: Effective and efficient fuzzing
� Blindly mutating will create huge amount of redundant test

cases --- ineffective and inefficient

1 void decode_image(FILE* fd){
2 ...

...
6 if(chksum_in_file != recomputed_chksu

goto 8;
7 error();

Directly modifying “width” or “height"
fields will trigger the bug easily

� Directed fuzzing: focus on modifying the “hot bytes” that
refer to the input bytes flow into critical system/library calls

� Memory allocation, string operation…

16
Introduction TaintScope Conclusion

7 error();
8 int Width = get_width(fd);
9 int Height = get_height(fd);
10 int size = Width*Height*sizeof(int);//integer overflow
11 int* p = malloc(size);
12 …

A3: Generate the correct checksum

� The classical solution is symbolic execution
and constraint solving

Solving checksum(Data)== Chksum is hard or

impossible, if both Data andChksum are symbolic values

� We use combined concrete/symbolic execution
� Only leave the bytes in the checksum field as symbolic values

� Collect and solve the trace constraints on Chksum when reaching the
checksum test inst.

� Note that:

� checksum(Data) is a runtime determinable constant value.

� Chksum originates from the checksum field, but may be transformed, such
as from hex/oct to dec number, from little-endian to big-endian.

17
Introduction TaintScope Conclusion

Design Summary

� Directed Fuzzing

� Identify and modify “hot bytes” in valid inputs to
generate malformed inputs
� On top of PIN binary instrumentation platform

� Checksum-aware Fuzzing� Checksum-aware Fuzzing

� Locate checksum check points and checksum fields.

� Modify the program to accept all kinds input data

� Generate correct checksum fields for malformed
inputs that can crash the modified program
� Offline symbolically execute the trace, using STP solver

18
Introduction TaintScope Conclusion

Evaluation

� Component evaluation

� E1: Whether TaintScope can locate checksum
points and checksum fields?

� E2: How many hot byte in a valid input?

E3: Whether TaintScope can generate a correct � E3: Whether TaintScope can generate a correct
checksum field?

� Overall evaluation

� E4: Whether TaintScope can detect previous
unknown vulnerabilities in real-world applications?

19
Introduction TaintScope Conclusion

Evaluation 1: locate checksum points

� We test several common checksum algorithms, including
CRC32, MD5, Adler32. TaintScope accurately located the
check statements.

20
Introduction TaintScope Conclusion

Evaluation 2: identify hot bytes

� We measured the number of bytes could affect the size
arguments in memory allocation functions

21
Introduction TaintScope Conclusion

Evaluation 3: generate correct checksum
fields

� We test malformed inputs in four kinds of file
formats.

� TaintScope is able to generate correct checksum
fields.

22
Introduction TaintScope Conclusion

Evaluation 4 : 27 previous unknown vulns

MS Paint Google Picasa Adobe Acrobat ImageMagick

23
Introduction TaintScope Conclusion

irfanview gstreamer Winamp XEmacs

Amaya dillo wxWidgets PDFlib

Evaluation 4 : 27 previous unknown vulns

24

Evaluation 4: 27 previous unknown vulns

25
Introduction TaintScope Conclusion

Conclusion

� Checksum is a big challenge for fuzzing tools

� TaintScope can perform:

� Directed fuzzing
� Identify which bytes flow into system/library calls.

dramatically reduce the mutation space.� dramatically reduce the mutation space.

� Checksum-aware fuzzing
� Disable checksum checks by control flow alternation.

� Generate correct checksum fields in invalid inputs.

� TaintScope detected dozens of serious
previous unknown vulnerabilities.

26
Introduction TaintScope Conclusion

Thanks for your attention!

