31st IEEE Symposium on Security & Privacy »

TaintScope: A Checksum-Aware
Directed Fuzzing Tool for Automatic
Software Vulnerability Detection

Tielei Wang', Tao Wei', Guofei Gu*, Wei Zou'
‘Peking University, China
*Texas A&M University, US

Outline

Introduction
0 Background

o Motivation
TaintScope

0 Intuition

o System Design
o Evaluation

Microsoft (GO gle F\\' .

Conclusion Adobe

Fuzzing/Fuzz Testing

Feed target applications with malformed inputs
e.g., invalid, unexpected, or random test cases

0 Proven to be remarkably successful

o E.g., randomly mutate well-formed inputs and runs
the target application with the “mutations”

Malformed
Input

‘ Fuzzer ‘ >

|

Application

Sk

Introduction

TaintScope

Conclusion

Fuzzing is great

In the best case, malformed
inputs will explore different
program paths, and trigger
security vulnerabilities

However...

Introduction

TaintScope Conclusion

A quick example

re-compute a new

checksum
1 void decode_image(FILE* fd){
2 ...
3int length = get_length(fd); read the attached

4 int reconputed chksum = checksun(fd, |ength);
5 int chksumin file = get_checksun(fd); checksum
/lline 6 is used to check the integrity of inputs

6 if(chksumin file !'= reconputed chksum
7 error();

8 int Width = get_width(fd);
9 int Height = get_height(fd);
10 int size = Wdth*Hei ght*sizeof(int);/
11 int* p = malloc(size);

12 ...

compare tow values]

» Malformed images will be dropped when the decoder
function detects checksums mismatch

Introduction TaintScope Conclusion

Checksum: the bottleneck

Checksum is a common way to test the integrity
of input data

= Y

([\
\ \

Y

\%?,

Most mutations are blocked
at the checksum test point

i f (CheCkSUIT(Data) I = Chksum)
/

Introduction

TaintScope

Conclusion

Our motivation

Penetrate checksum checks!

// \
(
\\ \/

/

o

Our Goal

Introduction

TaintScope

Conclusion

Intuition

Disable checksum checks by control flow alteration

| f (checksun(Daa) ! = Chisum)
goto L1;
exit();
*L1:
conti nue();

Wbdgf hatd program

Fuzz the modified program

Repair the checksum fields in malformed inputs
that can crash the modified program

Introduction TaintScope Conclusion

Key Questions

Q1: How to locate the checksum test
instructions in a binary program?

Q2: How to effectively and efficiently fuzz for
security vulnerability detection?

Q3: How to generate the correct checksum
value for the invalid inputs that can crash the
modified program?

Introduction TaintScope Conclusion

TaintScope Overview

Checksum
Locator

Instruction
Profile

Modified
Program

—

Directed
Fuzzer

Crashed
Samples

—

i i Hot Bytes Info

[Execution Monitor

]

Checksum
Repairer

o

A1: Locate the checksum test instruction

Key Observation 1

Checksum is usually used to protect a large number
of input bytes

| Do [Cricu]

\ J
| (checksmvjm(Daa) 1= CL(S.,m)

Based on fine-grained taint analysis, we first find the
conditional jump instructions (e.g., jz, je) that depend
on more than a certain number of input bytes

Take these conditional jump instructions as candidates

Introduction TaintScope Conclusion

11

A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

We log the behaviors of candidate

conditional jump instructions %(:

Introduction TaintScope Conclusion 1

A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

We log the behaviors of candidate
conditional jump instructions

@ Run well-formed inputs, identify the
always-taken and always-not-taken insts

=N
oo

Introduction TaintScope Conclusion 13

A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

We log the behaviors of candidate

conditional jump instructions
@ Run well-formed inputs, identify the %_‘
always-taken and always-not-taken insts
@ Run malformed inputs, also identify the
always-taken and always-not-taken insts ‘—Qﬁ

o9 LT

Introduction TaintScope Conclusion

14

A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

We log the behaviors of candidate

conditional jump instructions
@ Run well-formed inputs, identify the @‘
always-taken and always-not-taken insts
@ Run malformed inputs, also identify the
always-taken and always-not-taken insts ‘—Qﬁ
® Identify the conditional jump inst that é 5
behaves completely different when

Introduction TaintScope Conclusion

processing well-formed and malformed
inputs

15

A2: Effective and efficient fuzzing

Blindly mutating will create huge amount of redundant test

cases --- ineffective and inefficient

2 ...

12 ...

1 void decode_image(FILE* fd){

6 if(chksum_in_file !=recomputed chks
goto 8;

7 error();

8 int Wdth = get_wdth(fd);

9 int Height = get _height(fd);

W dt h* Hei ght *si zeo? (i nt) ;//integer overflow

mal | oc(si ze) ;

10 int size =
11 int*p =

s
Directly modifying “width” or “height”
fields will trigger the bug easily

]

Directed fuzzing: focus on modifying the “hot bytes” that
refer to the input bytes flow into critical system/library calls

o Memory allocation, string operation...

Introduction

TaintScope

Conclusion

16

A3: Generate the correct checksum

The classical solution is symbolic execution
and constraint solving

Solving checksum(Das) == Cuunis hard or
impossible, if both Daw and Cuen are symbolic values

We use combined concrete/symbolic execution

o Only leave the bytes in the checksum field as symbolic values

o Collect and solve the trace constraints on Cisum When reaching the
checksum test inst.

o Note that:
checksun(D..) is a runtime determinable constant value.

CresumoTiginates from the checksum field, but may be transformed, such
as_from hex/oct to dec number, from little-endian to big-endian.

Introduction TaintScope Conclusion

17

Design Summary

Directed Fuzzing

0 Identify and modify “hot bytes” in valid inputs to
generate malformed inputs

On top of PIN binary instrumentation platform
Checksum-aware Fuzzing
0 Locate checksum check points and checksum fields.
0 Modify the program to accept all kinds input data

0 Generate correct checksum fields for malformed
inputs that can crash the modified program

Offline symbolically execute the trace, using STP solver

Introduction TaintScope Conclusion 18

Evaluation

Component evaluation

0 E1: Whether TaintScope can locate checksum
points and checksum fields?

0 E2: How many hot byte in a valid input?

0 E3: Whether TaintScope can generate a correct
checksum field?

Overall evaluation

0 E4: Whether TaintScope can detect previous
unknown vulnerabilities in real-world applications?

Introduction TaintScope Conclusion 19

Evaluation 1: locate checksum points

We test several common checksum algorithms, including
CRC32, MDs5, Adler32. TaintScope accurately located the
check statements.

| Executable | Package (Version) | File Format | Checksum Algorithm § [A| [[(P: nP5) U (Po N PY) [|| Detected? |
PicasaPhotoViewer | Google Picasa (3.1) 830 1 v
Acrobat Adobe Acrobat (9.1.3) NG i 5.805 ! v
Snort snort (2.8.4.1) _—— 2 2 v
topdump icpdump (2.0.0) PCAP TCP/IP checksum 3 5 7
sigtool clamav (0.95.2) Evh MD5 2 1 v
vediff open-vediff (0.6) VCDIFF Adler32 1 1 v
Tar GNU Tar (1.22) Tar Archive Tar checksum 9 1 v
objcopy GNU binutils (2.17) Intel HEX | Intel HEX checksum 62 1 vV

Introduction TaintScope Conclusion 20

Evaluation 2: identify hot bytes

We measured the number of bytes could affect the size
arguments in memory allocation functions

Executable | Package | Input Format || Input Size (Bytes) | # Hot Bytes [|[# X86 Instrs | Run Time
TIEF 5778 18 191,759,211 2m53s
2.020 18 82.640.260 1m30s
Display ImageMagick PNG ?lig ,Jg ;ggiégj& “;:igz
6,617 TT || 48.083.897 Tm13s
i 6.033 9 48.823.005 Tmils
GIF 3.190 14 [} 304,993,501 Im25s
6.529 43 |§ 536,938,567 2m57s

) 3
PicasaPhotoViewer.exe | Google Picasa PNG I?‘;,O, ig gég?‘élz:’;g 52:1]132
BMP 3,174 8 [f 310,909,256 Im21s
7.462 19 |} 468.273.580 2m35s
BMP 1.440 6 [} 658,370,048 4m25s
3.678 6 || 663.923.080 Sm2s

7 307 2

Acrobat.exe Adobe Acrobat PNG 1?;20 Té ;2123%12? 4?}?;?:
1,012 13 |f 328,365,912 4m1l4s
JPEG 2,356 4 |} 356,136,453 4m36s

Introduction TaintScope Conclusion

Evaluation 3: generate correct checksum

fields

We test malformed inputs in four kinds of file
formats.

TaintScope is able to generate correct checksum

fields.

Executable | File Format | # fields | [field] | Repaired? | Time (s)
display PNG - - v 271.9
tepdump PCAP 8 2 v 455.6
tar Tar Archive 3 8 i 5728
objcopy Intel HEX 4 2 v 327.1

Introduction TaintScope Conclusion

‘ Evaluation 4 : 27 previous unknown vulns

%‘f 1’.! Picasaq.. @

MS Paint Google Picasa Adobe Acrobat ImageMagick
4
— gstreamer @WiN AMP X K dres
irfanview gstreamer Winamp XEmacs
A,
Amaya dillo wxWidgets PDFlib
Introduction TaintScope Conclusion ’

‘ Evaluation 4 : 27 previous unknown vulns

Adobe would like to thank the following individuals and organizations for reporting the relevant issues and for working with
_\JI Secunia Advisories Adobe to help protect our customers’ security:

« Michael Schmidt of Compass Security (hitp:fwww.csnc.ch) (CVE-2007-0048, CVE-2007-0045)
« Didier Stevens (CVE-2009-2979)
g GOOgle Picasa JPEG — « Drew Yao of Apple Product Security (http:fwww.apple com/suppart's ecurity) (CVE-2009-2930)

Highlighted

Processing Integer « Stefano Di Paola of Minded Security (ttp:www.minde ds e curity com/) (CVE-2008-2081)
Overflow Vulnerability « Guillaume Delugré and Frédéric Raynal of SOGETI ESEC (hitp://esec.fr.sogeti.com/) (CVE-2009-2982, CVE-2009-3451,
— CVE-2009-2462)

SkyLined of Google Inc. (hitp:/skypher.com/SkyLined) (CVE-2009-2983)

. Adobe getPlus DLM =TT :

afate Una LJthO ri sed * Tavis Ormandy, Google Security Team (htip:/fwww.google. comicorporatel/security. himl) (CVE-2009-2984)

Insta | | ation An anonymous researcher reported through TippingPoint's Zero Day Initiative (hitp/fwww .zerodayinitiative. com/y

| b | : (CVE-2009-2985)
Vulne I'EI_ = L tv * Will Dormann, CERT (hitp/iwww.cert.oral) (CVE-2009-2985)
2 days ago /f 9326 wiew
HoE B e » Fhenhua Liu and Xiaopeng Zhang of Fortinet's FortiGuard Global Security Research Team (hitp:iwww fotiguardcenter.com)

gl Google Chrome e T = e e

|"y"|] | t| Q | =] «Q Tielei Wang from ICST-ERCIS (Engineering Research Center of Info Security, Institute of Computer Science & Technology,

e Peking University / China) (CVE-2009-2989, CVE-2009-2985
Vulnerabilities 2 il A)

2 weels ELT) 10257 wiews

Acknowledgments
Microsoft thanks the following for working with us to help protect customers:

Damian Frizza of Core Security Technologies for reporting an issue described in MS10-003

Carsten Eiram of Secunia for reporting an issue described in M510-004

Sean Larsson of VeriSign iDefense Labs for reporting three issues described in M510-004

SkD, working with TippingPoint's Zero Day Initiative, for reporting an issue described in MS10-004

Cody Pierce of TippingPoint DVLabs for reporting an issue described in MS10-004

Tielei Wang of ICST-ERCIS (Engineering Research Center of Info Security, Institute of Computer Science & Technology, Peking
University/China}, workiﬂg with Secunia, for reporting an issue described in M510-005

—r

24

‘ Evaluation 4: 27 previous unknown vulns

Package | Vuln-Type # Vulns | Checksum-aware? | Advisory Severity Rating
Microsoft Paint (| Memory Corruption 1 N CVE-2010-0028 | Moderate

oo Infinite loop] pending N/A
e Integer Overflow 1 i SA38435 Moderate

Infinite loop 1 N CVE-2009-2995 | Extremely critical
S Memory Corruption 1 N CVE-2009-2989 | Extremely critical
ImageMagick Integer Overflow 1 N CVE-2009-1882 | Moderate
Camllmage Integer Overflow 3 ¥ CVE-2009-2660 | Moderate
LibTIFF Integer Overflow 2 N CVE-2009-2347 | Moderate
; Buffer Overflow 2 N
1 _":I‘ iy a
wxWidgets Gookis s : Y CVE-2009-2369 | Moderate
IrfanView Integer Overflow 1 N CVE-2009-2118 | High
GStreamer Integer Overflow] Y CVE-2009-1932 | Moderate
Dillo Integer Overflow 1 ¥ CVE-2009-2294 | High
XEmacs Integer Overflow 3 ¥ CVE-2009-2688 | Moderate
Null Dereference 1 N N/A N/A
MPlayer Null Dereference 2 N N/A N/A
PDFlib-lite Integer Overflow i b'§ SA35180 Moderate
Amaya Integer Overflow 2 | J SA34531 High
Winamp Buffer Overflow I N SA35126 High
Total 27
Introduction TaintScope Conclusion 55

Conclusion

Checksum is a big challenge for fuzzing tools
TaintScope can perform:

o Directed fuzzing
Identify which bytes flow into system/library calls.
dramatically reduce the mutation space.

0 Checksum-aware fuzzing
Disable checksum checks by control flow alternation.
Generate correct checksum fields in invalid inputs.

TaintScope detected dozens of serious
previous unknown vulnerabilities.

Introduction TaintScope Conclusion 2%

Thanks for your attention!

